

Architecture
Engineering
Planning
Technology
Facility Consulting

11 Greenway Plaza
Suite 2210
Houston, Texas 77046-1104
Telephone: 713/965-0608
Fax: 713/961-4571

ADDENDUM NO. 04
January 06, 2026

To Drawings and Specifications dated December 05, 2025.

PKG 3B – GPHS ATHLETICS, ACADEMIC & MULTI-PURPOSE FACILITY

Prepared by: PBK
11 Greenway Plaza, 22nd Floor
Houston, TX 77046-1104
PBK Project No: 240539

Notice to Bidders

- A. Receipt of this Addendum shall be acknowledged on the Bid Form.
- B. This Addendum forms part of the Contract documents for the above referenced project and shall be incorporated integrally therewith.
- C. Each bidder shall make necessary adjustments and submit his proposal with full knowledge of all modifications, clarifications, and supplemental data included therein. Where provisions of the following supplemental data differ from those of the original Contract Documents, this Addendum shall govern.

GENERAL

Item No. 01 Pre-proposal Questions

Question 01: RFI regarding the planting schedule and the plant call outs not matching and there seems to be a call out for two trees on the attached screenshot I have attached, it calls for a Lacebark Elm and a Chaste Tree. I will forward the email to you with the picture.

- i. Response: No Chaste tree. Callout has been updated. Updated sheet included in Addendum 03.

Question 02: Please clarify the type of shelving in the School Book Room (1127) & Testing / Storage (1132). Will this be Metal Shelving or Casework? If it is to be casework, please provide elevations.

- i. Response: Metal shelving type has been specified in Addendum 03 for rooms 1127 and 1132, refer to equipment schedule.

Question 03: Please confirm that Alternate Number 7 is valid. It is shown in Volume 01 but not in the IFP Specifications.

- i. Response: Yes, Alternate Number 7: Base Proposal Reduction is valid.

Question 04: Sheet AS-711 notes a vehicular gate (14/AS-711) and a rolling gate (10/AS-711). Neither of these are shown in the plans. Please clarify if these will be on the project.

- i. Response: There are no vehicular gates in phase 3B. Details to be omitted.

Question 05: A-101F School Book Room 1127 on sheet A-101F does not have any callouts for the casework contained therein. Please provide callouts for this casework.

- i. Response: There is no casework in School book room 1127 only metal shelving. Refer to equipment schedule that was updated in Addendum 03.

Question 06: A-101F Testing/Storage room 1132 on sheet A-101F does not have any callouts for the casework along the plan west and north wall. Please provide callouts for this casework.

- i. Response: There is no casework in Testing/Storage Room 1132 only metal shelving. Refer to equipment schedule that was updated in Addendum 03.

Question 07: 10 22 39, E-101B The folding partition specification calls for the partition dividing rooms 1519/1529 to be electric operation. The electrical power plan page E-101B does not show a motor or power to a folding partition. Please confirm if the partition is to be manual or electric operation.

i. Response: The folding partitions to be manual operation NOT electric.

Question 08: Please clarify how many scoreboards there are to be in the competition gym. There is usually 2 given this application but the drawings only show 1 per Elevations 1/A-931 & A-933. There is also no mention in the specs regarding the quantity.

i. Response: The Comp Gym will have (2) Scoreboards, and each practice gym will have (1) each, total of (4). Refer to Equipment Schedule noting all Scoreboards will be OFCI. Elevation 01/A-931 & 01/A-933 have the updated elevations too in ADD 03.

Question 09: Please clarify if the sprinkler pump requires an uninterrupted power supply from the utility company. We ask this because this is usually a requirement from NFPA and the electrical one line does not show anything feeding the sprinkler pump.

i. Response: The fire pump is diesel direct driven since we are reusing the existing system.

Question 10: Can we have access to the Revit Model?

i. Response: Access to the Revit model will be given to the awarded bidder.

Question 11: Clock System – plans call for several new clocks to be added to the high school system– the clock type called for in the specifications is an IP based clock. This conflicts with the existing system configuration which is wireless sync system powered by 110volt ac.

i. Response: Refer to Addendum 03 for a response.

Question 12: Please provide the Geotech Report.

i. Response: Refer to Geotech Report attached.

Question 13: Refer to 1/S-302. It looks like the heights and widths are reversed for GB10 & GB11. Please clarify if the Depths of both beams should be 2'-6" and that the Width of GB10 is 3'-6" and GB11 should be 4'-0".

i. Response: No, the GB10 and GB 11 listed depths and width in the schedule are correct.

Question 14: Asphalt was added in addendum 3 to the pull-in lane for the Multi-Purpose building. However, the type was not indicated. Please indicate whether it will be light, medium or heavy-duty.

i. Response: Heavy-duty asphalt is needed.

Question 15: The mechanical platforms on S-104D and S-104F were revised in Addendum 3 but S-104M was not. Please revise S-104M to match the revised design on S-104D&F. Please also indicate the post sizes.

i. Response: Mechanical Platforms above the classrooms Areas D&F are different than the platform at Area M. Please note the Mechanical platform at area M is a pre-fab by the manufacturer therefore there is No S104M sheet. Please also note, the framing for the platforms areas D & F have been eliminated in the last addendum and will be provided by the RTU Manufacturer (please coordinate with MEP drawings/ submittal).

Question 16: Addendum 3 changed the design of the mechanical platforms in areas D & F. However, this new design does not appear to match what is shown on M-301. Please clarify.

i. Response: Mechanical Modular Plant changed on Addendum 3. Please clarify question.

Question 17: Please confirm whether stair 11 will have polystyrene under neath per 5/S514. Please also indicate whether these will be concrete filled and if so, please provide the slab thickness along with sidewall details.

- i. Response: Stairs to be designed by the steel fabricator. As an alternate option, Geofoam can be provided below the stairs to support it. At any case, concrete slab is required, matching the rest of the stairs in the project.

Question 18: Please provide a plinth schedule.

- i. Response: REF: S-303 and S-303SF

Question 19: Referring to sheet S101A, along gridlines G1 and G24, the top concrete elevations of the spread footings are varying. Please advise whether: We should increase the depth of the grade beam to match these varying elevations (noting depth will deviate from the grade beam schedule) or we should increase the depth of the spread footings to establish a uniform top-of-footing elevation. A slab turn-down should be provided to align with the top of floor elevation.

- i. Response: Per detail 4/S-321, there is a concrete stem wall above the grade beam to achieve the slab F. F elevation.

Question 20: 10 22 39 Substitution Request: Kwik-Wall.

- i. Response: Refer to Addendum 03 for a response.

Question 21: Please clarify if the temporary swing space will be in this phase and if so, please clarify if it will be CFCI.

- i. Response: The temporary swing space located within the multi-purpose facility is not included in this phase. Other temporary swing spaces noted within the construction documents are CFCI.

Question 22: Please clarify if there will be any pavement marking scope on the site in for this project. We are provided with a spec but nothing is shown in the drawings.

- i. Response: The project scope does not include pavement markings

Question 23: 10 73 16.13 Metal Canopies Substitution Request: Canopy Solutions

- i. Response: Canopy Solutions is an acceptable product. See approval attached.

Question 24: 07 95 13 Expansion Joint Cover Assemblies Substitution Request: Erie Metal Specialties Inc

- i. Response: Erie Metal Specialties is an acceptable manufacturer. See approvals attached.

Question 25: In spec section 10 56 13, Uline is not listed as an approved manufacturer in section 2.1.A Manufacturers, but the drawings on page A-101A specify the storage shelving as a U-Line product. Please advise if U-Line is an accepted manufacturer.

- i. Response: U-Line is an acceptable manufacturer. It has been added to the specification.

SPECIFICATIONS

Item No. 1

00 31 32 - GEOTECHNICAL DATA

- A. Issued specification in its entirety.

Item No. 2

10 56 13 - METAL STORAGE SHELVING

- A. 2.1 MANUFACTURERS
 - 1. Added an approved manufacturer.
 - h. Uline - <https://www.uline.com/>

END OF ADDENDUM NO. 04

01/06/2026

SECTION 00 31 32 - GEOTECHNICAL DATA

PART 1 - GENERAL

1.1 GEOTECHNICAL REPORT

- A. Geotechnical Report: A report of a geotechnical investigation entitled Geotechnical Engineering Report Galena Park High School – Phase 3B, 1000 Keene Street, Galena Park, Texas 77547, project number H251673-2, dated November 7, 2025, has been prepared for Galena Park Independent School District, Harris County, Texas by the Geotechnical Consultant, UES Professional Solutions 44, LLC, Houston, Texas (713) 360-0460, based on soil boring samples obtained at the Project site on April 3, 2025 through April 24, 2025.
- B. Boring Logs: Excerpts from the Geotechnical Report, including a Boring Plan, Boring Logs describing strata for each test hole, and results of laboratory tests, are bound herein, or if not bound herein, will be made available to Offerors by the Owner upon request.
- C. The Drawings and Specifications govern the construction of the Project. Boring Logs and the Geotechnical Report are made available for the information and convenience of Offerors. The findings and recommendations are the responsibility of the preparer, and are not part of the Contract Documents.

1.2 SUBSURFACE CONDITIONS

- A. Subsurface conditions indicated in the report were found to exist at the locations shown on the dates the samples were taken and the tests performed. Since subsurface conditions, including but not limited to the presence of groundwater, may vary significantly from time to time, no representation or warranty is made that the conditions described in the Geotechnical Report describe the actual conditions that will be extant during the performance of the Work of This Contract.
- B. Offerors shall visit the site and become fully acquainted with the conditions affecting the Work of This Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 00 31 32

GEOTECHNICAL ENGINEERING REPORT

GALENA PARK HIGH SCHOOL – PHASE 3B

1000 Keene Street

Galena Park, Texas 77547

UES Project No. H251673-2

November 7, 2025

Prepared for:

GALENA PARK ISD

14705 Woodforest Boulevard

Houston, Texas, 77015

Attention: Ed Martir

Prepared by:

Environmental
Geotechnical Engineering
Materials Testing
Field Inspections & Code Compliance
Geophysical Technologies

November 7, 2025

Ed Martir
Galena Park ISD
14705 Woodforest Boulevard
Houston, Texas, 77015

Re: GEOTECHNICAL ENGINEERING REPORT
Galena Park High School – Phase 3B
Galena Park, Texas
UES Project No.H251673-2

Dear Mr. Martir:

UES Professional Solutions 44, LLC (hereinafter “UES”), is pleased to submit this Geotechnical Engineering Report for the referenced project. The results of this exploration, together with our recommendations, are presented in the accompanying report, an electronic copy of which is being transmitted herewith. This geotechnical study was authorized by Ben Pape and Michael McKay with Galena Park ISD via a Geotechnical Testing & Reporting Services Agreement and performed in accordance with UES Proposal No. 111602, Revision 2, dated March 24, 2025.

UES appreciates the opportunity to be of service on this project. If we can be of further assistance, such as providing materials testing services during construction, please contact our office.

Respectfully submitted,

UES Professional Solutions 44, LLC

A handwritten signature in blue ink, appearing to read "V.G." followed by a stylized surname.

Victor Guevara Jr., E.I.T.
Staff Geotechnical Engineer

A handwritten signature in blue ink, appearing to read "Hai" followed by a stylized surname.

Harry (Hai) Minh Nguyen, Ph.D., P.E.
Senior Project Engineer

TABLE OF CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	1
2.0 FIELD EXPLORATION	2
3.0 LABORATORY TESTING	3
4.0 SITE CONDITIONS	4
4.1 General	4
4.2 Geology	5
4.3 Soil Conditions	5
4.4 Groundwater	7
5.0 ANALYSIS AND RECOMMENDATIONS	8
5.1 Seismic Site Classification	8
5.2 Potential Vertical Rise (PVR)	8
5.3 Construction Excavations	10
5.4 Groundwater Control	10
5.5 Earthwork	11
5.5.1 Site Preparation	11
5.5.2 Proofroll	11
5.5.3 Construction Considerations	11
5.5.4 Grading and Drainage	12
5.5.5 Wet Weather/Soft Subgrade	12
5.5.6 Fill	13
5.5.7 Testing	14
5.6 Demolition Considerations	15
5.7 Existing Fill	15
5.8 Slab-on-Grade and Subgrade Improvement	16
5.9 Foundation System	18
5.9.1 Shallow Footings	18
5.9.2 Underreamed Drilled Piers	20
5.9.3 Straight Shaft Drilled Piers	22
5.9.4 Auger Cast Piles	26
5.10 Pavement	29
5.10.1 Rigid Pavement	29
5.10.2 Pavement Subgrade	30
6.0 LIMITATIONS	31

APPENDICES

- Appendix A - Project Location Diagrams
- Appendix B - Boring Location Diagram
- Appendix C - Boring Logs and Laboratory Results
- Appendix D - Aerial Photographs
- Appendix E - USGS Topographic Map
- Appendix F - Site Photographs
- Appendix G - Geologic Information
- Appendix H - Unified Soil Classification System

1.0 INTRODUCTION

Purpose and Scope. The purpose of this geotechnical study was to evaluate some of the physical and engineering properties of subsurface materials at selected locations on the subject site to develop geotechnical engineering design parameters and recommendations for the proposed project. To accomplish this, the scope of this study included field exploration consisting of drilling test borings and collecting samples of the subsurface materials, performing laboratory testing on selected samples obtained during the field exploration, performing engineering analysis and evaluation of the subsurface conditions with respect to the project characteristics, and development of foundation and pavement recommendations suitable for the proposed project. The scope of services did not include an environmental assessment of the site.

Project Location. The project is located at 1000 Keene Street, in Galena Park, Texas. The general location and orientation of the site are provided in Appendix A - Project Location Diagrams.

Project Description. The project consists of a three-story classroom and multipurpose (MP) facility building (approximately 82,500 SF), a three-story athletics/gym building (approximately 30,000 SF), and a batting cage structure, along with associated parking and driveways.

Loading Information. Based on information provided by the client, we understand that the maximum column loads for the proposed classroom and MP facility building and the athletics/gym building will be about 450 kips. *Any change in the structural loads should be brought to our attention to review the design and assess the suitability of the recommendations provided.*

Site Grading Plan. Based on the most recent grading plan provided by the client (“PKG 3B – GPHS Rebuild”, Site Plan, Sheet C 101) dated July 14, 2025, the approximate existing grade range across the proposed building footprint areas, the proposed Finished Floor Elevations (FFE), and the resulting required cut depths and fill material thicknesses are summarized in the table below. The cut and fill thicknesses presented are approximate and do not consider over-excavation or fill thicknesses resulting from any necessary site remediation as discussed in forthcoming sections of this report.

Building	Estimated Existing Elevation (feet)	Finished Floor Elevation, FFE (feet)	Approximate Range to Achieve Final Grade	
			Required Cut (feet)	Required Fill (feet)
Classroom MP and facility Building	21 to 25	25.79	0	1 to 5
Athletics/Gym Building	23 to 24	25.79	0	2 to 3

Any changes to the site grading plan should be brought to the attention of UES for review and revision of recommendations, as appropriate.

Cautionary Statement Regarding Use of this Report. As with any geotechnical engineering report, this report presents technical information and provides detailed technical recommendations for civil and structural engineering design and construction purposes. UES, by necessity, has assumed the user of this document possesses the technical acumen to understand and properly utilize the information and recommendations provided herein. UES strives to be clear in its presentation and, like the user, does not want potentially detrimental misinterpretation or misunderstanding of this report. Therefore, we encourage any user of this report with questions regarding its content to contact UES for clarification. Clarification will be provided verbally and/or issued by UES in the form of a report addendum, as appropriate.

Report Specificity. This report was prepared to meet the specific needs of the client for the specific project identified. Recommendations contained herein should not be applied to any other project at this site by the client or anyone else without the explicit approval of UES.

This Report is NOT a Specification. Recommendations in this report are not specifications. Geotechnical engineering requires significant experience and professional judgment. Conditions vary in the field which require and/or allow modification to recommendations provided herein at the discretion of the Geotechnical Engineer of Record.

2.0 FIELD EXPLORATION

Subsurface study. The subsurface study for this project is summarized in the following table. Boring locations are provided in Appendix B - Boring Location Diagram.

Boring Nos.	Depth, feet bgs ¹	Date Drilled	Location ²
B-06 to B-14	30 to 60	04/04-28/2025	Proposed Classroom MP and facility Building Area
B-15 to B-19	30	4/18 -24/2025	Proposed Athletics/Gym Building Area
B-20	25	4/8/2025	Proposed Batting Cage Structure Area
B-21 to B-23	5	4/3&22/2025	Proposed Pavement Area

Notes:

1. bgs = below ground surface.
2. Boring locations provided in Appendix B - Boring Location Diagram were not surveyed and should be considered approximate. Borings were located by recreational hand-held GPS unit. Horizontal accuracy of such units is typically on the order of 20-feet.

Boring Logs. Subsurface conditions were defined using the sample borings. Boring logs generated during this study are included in Appendix C - Boring Logs and Laboratory Results. Borings were advanced between sample intervals using continuous flight auger drilling procedures.

Cohesive Soil Sampling. Cohesive soil samples were generally obtained using Shelby tube samplers in general accordance with American Society for Testing and Materials (ASTM) D1587. The Shelby tube sampler consists of a thin-walled steel tube with a sharp cutting edge connected to a head equipped with a ball valve threaded for rod connection. The tube is pushed into the undisturbed soil by the hydraulic pulldown of the drilling rig. The soil specimens were extruded from the tube in the field, logged, tested for consistency using a hand penetrometer, sealed, and packaged to maintain "in situ" moisture content.

Consistency of Cohesive Soils. The consistency of cohesive soil samples was evaluated in the field using a calibrated hand penetrometer. In this test a 0.25-inch diameter piston is pushed into the undisturbed sample at a constant rate to a depth of 0.25-inch. The results of these tests are tabulated at the respective sample depths on the boring logs. When the capacity of the penetrometer is exceeded, the value is tabulated as 4.5+.

Granular Soil Sampling. Granular soil samples were generally obtained using split-barrel sampling procedures in general accordance with ASTM D1586. In the split-barrel procedure, a disturbed sample is obtained in a standard 2-inch outside diameter (OD) split barrel sampling spoon driven 18-inches into the ground using a 140-pound (lb) hammer falling freely 30 inches. The number of blows for the last 12-inches of a standard 18-inch penetration is recorded as the Standard Penetration Test resistance (N-value). The N-values are recorded on the boring logs at the depth of sampling. Samples were sealed and returned to our laboratory for further examination and testing.

Groundwater Observations. Groundwater observations are shown on the boring logs.

Borehole Plugging. Upon completion of the borings, the boreholes were backfilled with onsite soil cuttings from the top and plugged at the surface.

3.0 LABORATORY TESTING

UES performs visual classification and any of several laboratory tests, as appropriate, to define pertinent engineering characteristics of the soils encountered. Tests are performed in general accordance with ASTM or other standards and the results included at the respective sample depths on the boring logs or separately tabulated, as appropriate, and included in Appendix C - Boring Logs and Laboratory Results. Laboratory tests and procedures routinely utilized, as appropriate, for geotechnical studies are tabulated in the following table.

Test Procedure	Description
ASTM D1140	Standard Test Methods for Amount of Material in Soils Finer than the No. 200 (75- μ m) Sieve
ASTM D2166	Standard Test Method for Unconfined Compressive Strength of Cohesive Soil
ASTM D2216	Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
ASTM D2487	Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System)
ASTM D2488	Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)
ASTM D4220	Standard Practices for Preserving and Transporting Soil Samples
ASTM D4318	Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils
ASTM D4546	Standard Test Methods for One-Dimensional Swell or Settlement Potential of Cohesive Soils

4.0 SITE CONDITIONS

4.1 General

Review of Aerial Photographs. A review of aerial photographs indicates that the site was previously developed with multiple structures, which have since been demolished and removed. However, it is not known whether the foundations supporting the former buildings were removed and backfilled or abandoned in place. Our review also identified obvious areas of fill on-site. **Demolition considerations related to potential existing foundations, as well as recommendations for addressing the existing fill, are provided in Sections 5.6 and 5.7, respectively.**

Due to the intermittent nature and relatively low resolution of aerial photographs, as well as the lack of provided information regarding the past land use of the site, our review should not be interpreted as eliminating the possibility of past activities on site which could detrimentally affect future construction. No additional information was provided for this study regarding previous site activities or development. Aerial photographs reviewed for this study are included in Appendix D - Aerial Photographs.

Topography. A United States Geological Survey (USGS) topographic map of the site is provided in Appendix E - USGS Topographic Map. The project site is relatively flat.

Site Photographs. Representative photographs of the site at the time of this study are provided in “Appendix F - Site Photographs”. Photographed conditions are consistent with the aerial photographs and topographic map.

4.2 Geology

Geologic Formation. Based on available surface geology maps and our experience, it appears this site is located within the Beaumont Formation. A geologic atlas and USGS formation description are provided in “Appendix G - Geologic Information”. Soil within the Beaumont Formation can generally be characterized as clay, silt, and sand.

Geologic Faults. A review of the geologic map (<https://webapps.usgs.gov/txgeology/>) indicates that there are no known active or potentially active faults mapped within approximately 2 miles of the project site. Based on this information, UES considers the potential for surface fault rupture at the site to be low, and no additional fault investigation is recommended at this time.

4.3 Soil Conditions

Stratigraphy. Descriptions of the various strata and their approximate depths and thickness per the Unified Soil Classification System (USCS) are provided on the boring logs included in “Appendix C - Boring Logs and Laboratory Results”. Terms and symbols used in the USCS are presented in “Appendix H - Unified Soil Classification System”. A summary of the stratigraphy indicated by the borings is provided in the following table.

Generalized Subsurface Conditions at Proposed Classroom and MP Facility Building Location (Borings B-06 to B-14) ¹			
Nominal Depth, feet bgs (Except as Noted)		General Description	Detailed Description of Soils/Materials Encountered
Top of Layer	Bottom of Layer		
0	2 to 4	FILL	Soft to very stiff SANDY LEAN/LEAN/LEAN CLAY WITH SAND (CL) FILL, FAT/FAT CLAY WITH SAND (CH) FILL, and CLAYEY SAND (SC) FILL.
2 to 4	30 to 60	PREDOMINANTLY FAT CLAY and LEAN CLAY WITH SOME SILTY SAND	Soft to very stiff SANDY/FAT CLAY (CH), Soft to very stiff SANDY/LEAN/LEAN CLAY WITH SAND (CL), and Medium dense SILTY SAND (SM).

Note:

1. Boring Termination Depth = 30 to 60 feet bgs.

Generalized Subsurface Conditions at Proposed Athletics/Gym Building Location (Borings B-15 to B-19) ¹			
Nominal Depth, feet bgs (Except as Noted)		General Description	Detailed Description of Soils/Materials Encountered
Top of Layer	Bottom of Layer		
0	2 to 4	FILL	Soft to very stiff SANDY/LEAN CLAY WITH SAND (CL) FILL and FAT CLAY WITH SAND (CH) FILL.
2 to 4	13	FAT CLAY, LEAN CLAY	Soft to firm FAT CLAY (CH) and Soft to stiff SANDY/LEAN/LEAN CLAY WITH SAND (CL).
13	30	VARIABLE FAT CLAY, LEAN CLAY and SAND	Firm to hard FAT CLAY (CH), Stiff LEAN CLAY (CL), Loose to medium dense SILTY SAND (SM), and Medium dense POORLY GRADED SAND (SP).

Note:

1. Boring Termination Depth = 30 feet bgs.

Generalized Subsurface Conditions at Proposed Batting Cage Location (Borings B-20) ¹			
Nominal Depth, feet bgs (Except as Noted)		General Description	Detailed Description of Soils/Materials Encountered
Top of Layer	Bottom of Layer		
0	2	FILL	Firm SANDY LEAN CLAY (CL) FILL.
2	25	FAT CLAY and LEAN CLAY	Firm to stiff FAT CLAY (CH) and SANDY/LEAN CLAY (CL).

Note:

1. Boring Termination Depth = 25 feet bgs.

Generalized Subsurface Conditions at Proposed Paving Location (Borings B-21 to B-23) ¹			
Nominal Depth, feet bgs (Except as Noted)		General Description	Detailed Description of Soils/Materials Encountered
Top of Layer	Bottom of Layer		
0	2	FILL	Firm to stiff SANDY/LEAN CLAY WITH SAND (CL) FILL.
2	5	FAT CLAY and LEAN CLAY	Soft to stiff FAT CLAY (CH) and LEAN CLAY WITH SAND(CL).

Note:

1. Boring Termination Depth = 5 feet bgs.

Swell Tests. Swell tests were performed on selected clay soil samples. Swell test details are provided in “Appendix C - Boring Logs and Laboratory Results”.

4.4 Groundwater

Groundwater Levels. The test borings were advanced using continuous flight augers and air-rotary drilling methods, with intermittent sampling methods. These dry drilling techniques enable observation of potential groundwater seepage levels. Groundwater levels encountered in the borings during this study are identified in the table below. Depths referenced in this report and in the table below are measured from the existing ground surface at the respective boring location at time of the field exploration.

Boring No.	Depth Groundwater Initially Encountered (feet, bgs)	Groundwater Depth after 15 Minutes (feet, bgs)
B-06	18	13
B-07	18	12
B-08	16	14
B-09	19	12
B-10	23	21
B-11	18	18
B-12	12	11
B-13	11	10
B-14	10	9
B-15	11	10
B-16	17	17
B-17	12	11
B-18	17	13
B-19	12	9
B-20	13	11
B-21 to B-23	Not Encountered	Not Measured

Long-term Groundwater Monitoring. These groundwater observations are indicative of the groundwater conditions present at the time the borings were drilled. The amount of water in an open borehole largely depends on the permeability of the soil encountered at the boring location. In relatively impervious soils, such as clayey soils, a suitable estimate of the groundwater depth may not be possible, even after several days of observation. Long-term monitoring of groundwater conditions via piezometers or groundwater monitoring wells was

not performed during this study and was beyond the scope of this study. Long-term monitoring can reveal groundwater levels materially different than those encountered during measurements taken while drilling the borings.

Groundwater Fluctuations. It is difficult to accurately predict the magnitude of subsurface water fluctuations that might occur based upon short-term observations. Future construction activities may alter the surface and subsurface drainage characteristics of this site. Seasonal variations, temperature, land-use, proximity to water bodies, and recent rainfall conditions may influence the depth to the groundwater. With these considerations UES recommends that the contractor verifies the groundwater elevation before construction starts.

5.0 ANALYSIS AND RECOMMENDATIONS

5.1 Seismic Site Classification

The Site Class assigned for seismic design considers various factors, such as the soil profile (whether it's soil or rock), shear wave velocity, and strength, averaged over a depth of 100 feet. As our borings didn't reach depths of 100 feet, we made determinations under the assumption that the subsurface materials beneath the borehole bottoms resembled those encountered at the termination depth. Following the guidelines outlined in Section 1613.3.2 of the 2021 International Building Code and Table 20.3-1 in the 2010 ASCE-7, we recommend utilizing Site Class D for seismic design purposes at this location.

5.2 Potential Vertical Rise (PVR)

Potential Vertical Rise. Potential Vertical Rise, PVR, is the calculated upward heave of the ground surface due to expansive soils related to weather-related changes in soil moisture in the active zone. PVR only applies to upward movement. The term settlement applies to downward movement related to loads on the soil.

For clay soil to swell or shrink, it must be subjected to increases or decreases in moisture content, respectively. The predominant way clay soils are subjected to increases or decreases in moisture content is the weather. As would be expected, extended periods of wet weather cause soil to get wetter and extended dry weather causes soil to get drier. The longer the period of wet or dry weather, the deeper the influence of the weather. Vegetation also causes variations in soil moisture content. Shallow rooted grass and bushes have a shallower impact, deep rooted trees have a deeper impact.

For clay soil at a given depth to influence surface heave, two things must happen: (1) the soil must be subjected to an increase in moisture, and (2) the swell pressure of the soil must

exceed the overburden pressure. Swell is typically calculated by assuming an "active" zone, a depth of soil impacted by weather which predominantly affects surface movements due to soil swell. Expansive soils below the active zone are typically ignored as they are assumed to be exposed to lower increases in moisture, experience higher overburden pressures, and have a less significant impact on the surface heave than the soils in the active zone.

As evidenced in this discussion, calculation of PVR is based on soil data, model assumptions, experience, and professional judgment. PVR is a calculated estimate and should not be construed to be an absolute number or a guarantee of performance. PVR can be higher or lower depending on actual site conditions. The PVR estimate we provide is our best estimate of what will be encountered.

Maintaining consistent moisture content in the soil is the key to minimizing both heave and shrinkage related structural problems. Therefore, building maintenance and control of water are paramount in the performance of a slab-on-grade and shallow foundations. Please see our recommendations in "Section 5.5.4 - Grading and Drainage" for water control and limit the extreme wetting or drying of the subsurface soils.

Calculated PVR. Considering the subsurface conditions encountered at this site and methods used to estimate the potential vertical rise of the soil, floor slabs and other soil-supported elements could experience soil-related movements of up to about 4 inches if constructed at the grades discussed in Section 1.0.

These potential seasonal movements were estimated in general accordance with methods outlined by Texas Department of Transportation (TxDOT) Test Method Tex-124-E, the results of swell tests, a Volflo analysis and engineering judgment and experience. Estimated movements were calculated assuming the moisture content of the in-situ soil within the normal zone of seasonal moisture content change varies between an "average" condition and a "wet" condition as defined by Tex-124-E. Also, it was assumed a 1 psi surcharge load from the floor slab acts on the subgrade soils. Movements exceeding those predicted could occur if positive drainage of surface water is not maintained or if soils are subject to an outside water source, such as leakage from a utility line or subsurface moisture migration from off-site locations.

Soil Moisture Confirmation Prior to Construction. The calculated PVR can vary considerably with prolonged wet or dry periods. We recommend the moisture content for the upper 8-feet (active zone) of soils within the building pad be assessed for consistency with this report prior to construction if:

1. An extended period has elapsed between the performance of this study and construction of the foundation, or
2. Unusually wet or dry weather is experienced between the performance of this study and construction of the foundation.

5.3 Construction Excavations

The contractor is responsible for designing any excavation slopes, temporary sheeting or shoring. Design of these structures should include any imposed surface surcharges. Construction site safety is the sole responsibility of the contractor, who shall also be solely responsible for the means, methods and sequencing of construction operations. The contractor should also be aware that slope height, slope inclination or excavation depths (including utility trench excavations) should in no case exceed those specified in local, state and/or federal safety regulations, such as OSHA Health and Safety Standard for Excavations, 29 CFR Part 1926, or successor regulations.

Preventative measures should be taken to avoid damaging or adversely affecting the integrity of the existing foundation system during construction activities. Temporary shoring may be required when excavating adjacent to the existing structure to install non-expansive fill material.

Stockpiles should be placed well away from the edge of the excavation and their heights should be controlled so they do not surcharge the sides of the excavation. Surface drainage should be carefully controlled to prevent flow of water over the slopes and/or into the excavations. Construction slopes should be closely observed for signs of mass movement, including tension cracks near the crest or bulging at the toe. If potential stability problems are observed, a geotechnical engineer should be contacted immediately. Shoring, bracing or underpinning required for the project (if any) should be designed by a professional engineer registered in the State of Texas.

5.4 Groundwater Control

Groundwater was initially encountered at depths as shallow as 10 feet bgs in borings during drilling and rose to depths as shallow as 9 feet within 15 minutes. If groundwater is encountered during excavation, dewatering to bring the groundwater below the bottom of excavations may be required. Dewatering could consist of standard sump pits and pumping procedures, which may be adequate to control seepage on a local basis during excavation. Supplemental dewatering will be required in areas where standard sump pits and pumping is not effective. Supplemental dewatering could include submersible pumps in slotted casings, well points, or eductors. The contractor should submit a groundwater control plan, prepared by a licensed engineer experienced in that type of work.

5.5 Earthwork

5.5.1 *Site Preparation*

In the area of improvements, all concrete, trees, stumps, brush, debris, septic tanks, abandoned structures, roots, vegetation, rubbish, and any other undesirable matter should be removed and properly disposed. All vegetation should be removed, and the exposed surface should be scarified to an additional depth of at least 6 inches. It is the intent of these recommendations to provide a loose surface with no features that would tend to prevent uniform compaction by the equipment to be used.

5.5.2 *Proofroll*

Building pad and paving subgrades should be proofrolled with a fully loaded tandem axle dump truck or similar pneumatic-tire equipment to locate areas of loose subgrade. In areas to be cut, the proofroll should be performed after the final grade is established. In areas to be filled, the proofroll should be performed prior to fill placement. Areas of loose or soft subgrade encountered in the proofroll should be removed and replaced with engineered fill, moisture conditioned (dried or wetted, as needed) and compacted in place.

5.5.3 *Construction Considerations*

Surface Sandier/Siltier Soils. The sandier/siltier soils encountered at and near the ground surface at this site are very susceptible to changes in moisture. The presence of surface water due to precipitation or groundwater may result in a decrease in the ability to compact and work with the soil. It is common for these soils to pump when subjected to high levels of moisture. In addition, these soils located at and near the ground surface will allow surface water to infiltrate until the water becomes perched on a less permeable layer at depth. As such, construction difficulties should be anticipated, especially during the wet season or immediately after rain events. Although having a thin layer of non-plastic or low plasticity soils overlying cohesive soils is typical of this geologic region, our experience suggests that the local contractors find these materials troublesome and can often be the source of change orders, construction delays, and budget over runs. Soils of this type are especially prone to requiring the implementation of wet weather/soft subgrade recommendations provided in this report.

Maintenance of Subgrade during Construction. While the exposed subgrade is expected to remain relatively stable initially, unstable conditions may arise during general construction activities, particularly if the soil is exposed to wet weather conditions and repetitive construction traffic. The use of lighter construction equipment can help minimize disturbance to the subgrade. In the event of unstable conditions, stabilization measures will be necessary. After grading is completed, it's crucial to maintain the moisture content of the subgrade

before proceeding with pavement/building slab construction. Minimizing construction traffic over the finished subgrade is advisable. If the subgrade becomes frozen, desiccated, saturated, or disturbed, the affected material should either be removed or treated by scarification, moisture conditioning, and recompaction before pavement/building slab construction begins. UES should be retained to observe earthwork and to perform necessary tests and observations during subgrade preparation.

5.5.4 *Grading and Drainage*

Every attempt should be made to limit the extreme wetting or drying of the subsurface soils because swelling and shrinkage of these soils will result. Standard construction practices of providing good surface water drainage should be used. A positive slope of the ground away from any foundation should be provided. Ditches or swales should be provided to carry the run-off water both during and after construction. Stormwater runoff should be collected by gutters and downspouts and should discharge away from the buildings.

Root systems from trees and shrubs can draw a substantial amount of water from the clay soil at this site, causing the clays to dry and shrink. This could cause settlement beneath grade-supported slabs such as floors, walks and paving. Trees and large bushes should be located a distance equal to at least one-half their anticipated mature height away from grade slabs.

Lawn areas should be watered moderately, without allowing the clay soil to become too dry or too wet.

5.5.5 *Wet Weather/Soft Subgrade*

Soft and/or wet surface soils may be encountered during construction, especially following periods of wet weather. Wet or soft surface soil can present difficulties for compaction and other construction equipment. If specified compaction cannot be achieved due to soft or wet surface soils, one of the following corrective measures will be required:

1. Removal of the wet and/or soft soil and replacement with select fill,
2. Chemical treatment of the wet and/or soft soil to improve the subgrade stability, or
3. If allowed by the schedule, drying by natural means.

Chemical treatment is usually the most effective way to improve soft and/or wet surface soils. UES should be contacted for additional recommendations if chemical treatment is planned due to wet and/or soft soils during construction. The treatment depth and chemical reagent type and application rate depend on the site condition during construction.

5.5.6 **Fill**

Select Fill. Any fill placed in building pad areas should consist of select fill. Select fill should consist of soil with a liquid limit of less than 40 and a Plasticity Index between 8 and 20. The select fill should be placed in loose lifts not exceeding 8-inches and should be compacted to at least **98 percent** maximum dry density (per ASTM D-698) and at a moisture content between optimum and 3 percent above optimum moisture content. The subgrade to receive select fill should be scarified to a depth of 6 inches and compacted to 93 to 96 percent of the material's maximum standard Proctor dry density (ASTM D-698) at a workable moisture level at least 3 percentage points above optimum.

Lime-treated Native Clay Soil. Based on the laboratory testing conducted for this study, the native clay on-site soils will not meet requirements for select fill outlined in the section titled "Fill". As an alternative to importing select fill, the native clay soil may be blended with lime to reduce the plasticity index to meet select fill requirements. Based on our experience, we expect that it will require between 4- and 8-percent lime (by dry unit weight) to reduce the plasticity index of the native clay soils to select fill requirements. Prior to selecting this alternative, lime series tests should be performed to assess the amount of lime required.

General Fill. General fill may be placed in improved areas outside of building pad areas. General fill should consist of material approved by the Geotechnical Engineer with a liquid limit less than 50. General fill should be placed in loose lifts not exceeding 8-inches and should be uniformly compacted to a minimum of 95 percent maximum dry density (per ASTM D-698) and within ± 2 percent of the optimum moisture content.

Fill Restrictions. Select fill and general fill should consist of those materials meeting the requirements stated. Select fill and general fill should not contain material greater than 4-inches in any direction, debris, vegetation, waste material, environmentally contaminated material, or any other unsuitable material.

Unsuitable Materials. Materials considered unsuitable for use as select fill or general fill include low and high plasticity silt (ML and MH), silty clay (CL-ML), organic clay and silt (OH and OL) and highly organic soils such as peat (Pt). These soils may be used for site grading and restoration in unimproved areas as approved by the Geotechnical Engineer. Soil placed in unimproved areas should be placed in loose lifts not exceeding 10-inches and should be compacted to at least 92 percent maximum dry density (per ASTM D-698) and at a moisture content within ± 4 percentage points of optimum.

Utilities and Deep Fills. In cases where utility lines and/or mass fills are more than 10 ft deep, the fill/backfill below 10 ft should be compacted to at least 100 percent of standard Proctor maximum dry density (ASTM D 698) and within -2 to $+2$ percentage points of the material's optimum moisture content. The portion of the fill/backfill shallower than 10 ft should be

compacted as previously outlined. Density tests should be performed on each lift (maximum 12-inch thick) and should be performed as the trench is being backfilled.

Even if fill is properly compacted, fills in excess of about 10 ft are still subject to settlements over time of up to about 1 to 2 percent of the total fill thickness. This should be considered when designing pavements and other structures over utility lines or adjacent to retaining walls with deep fill, or any other structure in deep fill areas. To reduce the risk of fill settlement, the portion of the fill below a depth of 10 ft below final grade should be compacted to a minimum of 100 percent of the material's maximum standard Proctor dry density (ASTM D-698). This procedure will reduce (but not eliminate) the risk of fill settlement. If this risk of subgrade settlement is not acceptable, consideration could be given to backfilling portions or all of the excavation with flexible base material, cement-stabilized sand, or flowable fill.

If utility trenches or other excavations extend to or beyond a depth of 5 ft below construction grade, the contractor or others shall be required to develop an excavation safety plan to protect personnel entering the excavation or excavation vicinity. The collection of specific geotechnical data and the development of such a plan, which could include designs for sloping and benching or various types of temporary shoring, is beyond the scope of this study. Any such designs and safety plans shall be developed in accordance with current OSHA guidelines and other applicable industry standards.

Cautionary Note. It is extremely important that select fill placed within building pads be properly characterized using one or more representative proctor samples. The use of a proctor sample which does not adequately represent the select fill being placed can lead to erroneous compaction (moisture and density) results which can significantly increase the potential for swelling of the select fill. The plasticity index of select fill soils placed during construction should be checked every day to confirm conformance to the project requirements and consistency with the proctor being utilized.

5.5.7 Testing

Required Testing and Inspections. Field compaction and classification tests should be performed by UES. Compaction tests should be performed in each lift of the compacted material. We recommend the following minimum soil compaction testing be performed: one test per lift per 2,500 square feet (SF) in the area of the building pad, one test per lift per 5,000 SF outside the building pad, and one test per lift per 100 linear feet of utility backfill. If the materials fail to meet the density or moisture content specified, the course should be reworked as necessary to obtain the specified compaction. Classification confirmation inspection/testing should be performed daily on select fill materials (whether on-site or imported) to confirm consistency with the project requirements. The testing frequency recommended herein can be altered (increased or decreased) at the discretion of the geotechnical engineer of record.

Liability Limitations. Since proper field inspection and testing are critical to the design recommendations provided herein, UES cannot assume responsibility or liability for recommendations provided in this report if construction inspection and/or testing is performed by another party.

5.6 Demolition Considerations

Applicability. Recommendations in this section apply to the removal of any existing foundations, utilities or pavement which may be present on this site.

General. Special care should be taken in the demolition and removal of existing floor slabs, foundations, utilities and pavements to minimize disturbance of the subgrade. Excessive disturbance of the subgrade resulting from demolition activities can have serious detrimental effects on planned foundation and paving elements.

Existing Foundations. Existing foundations are typically slabs, shallow footings, or drilled piers. If slab or shallow footings are encountered, they should be completely removed. If drilled piers are encountered, they should be cut off at an elevation at least 24-inches below proposed grade beams or the final subgrade elevation, whichever is deeper. The remainder of the drilled pier should remain in place. Foundation elements to remain in place should be surveyed and superimposed on the proposed development plans to determine the potential for obstructions to the planned construction. UES should be contacted if drilled piers are to be excavated and removed completely. Additional earthwork activities will be required to make the site suitable for new construction if the piers are to be removed completely.

Existing Utilities. Existing utilities and bedding to be abandoned should be completely removed. Existing utilities and bedding may be abandoned in place if they do not interfere with planned development. Utilities which are abandoned in place should be properly pressure-grouted to completely fill the utility.

Backfill. Excavations resulting from the excavation of existing foundations and utilities should be backfilled in accordance with Section 5.5.6.

Other Buried Structures. Other types of buried structures (wells, cisterns, etc.) could be located on the site. If encountered, UES should be contacted to address these types of structures on a case-by-case basis.

5.7 Existing Fill

Our subsurface study indicates existing fill on site. Existing fill was encountered in all boring locations B-06 through B-18, and B-19. Existing fill extended to a depth of up to about 2 to

4-feet bgs. It is worth noting that existing fill may also be present, potentially at greater depths, in other parts of the site. Accurately delineating fill soils, especially those resembling native soils, based on discrete test boreholes is challenging. As such, the recorded fill depths should be considered as estimates and may slightly deviate from the actual fill depths. Although not encountered in the borings for this project, uncontrolled fills may contain trash, debris, concrete rubble, construction debris, boulders, and other unsuitable materials.

For the purpose of this report, we have assumed the existing fill was placed under engineered supervision. If there is no record indicating that the fill was placed and compacted in a controlled manner (engineered fill), it will be necessary to remove the existing fill within the building pads and at least 5-feet horizontally beyond the perimeter of the building and replace it with select fill. Considering the depth of excavation required for subgrade improvement to reduce movements due to shrinking and swelling of active clays (see Section 5.8), we anticipate most or all of the existing fill will be removed from the building area.

In pavement areas, the existing fill at the pavement subgrade level should be proof-rolled with a heavy roller to detect possible weak areas. Any weak soils identified as part of the proof-rolling process should be removed and replaced with well-compacted soil as outlined in Section 5.5.6 of this report.

5.8 Slab-on-Grade and Subgrade Improvement

Potential Vertical Slab Movements. Based on the information gathered during this study, a slab constructed on-grade will be subject to potential vertical slab movements of up to about 4-inches.

Subgrade Treatment Using Select Fill. The depth of subgrade treatment is dependent on desired post-construction PVR. The following table presents recommended depth of subgrade treatment for various allowable post-construction PVR levels (as determined by Structural Engineer).

Subgrade Treatment - Select Fill Option		
Required PVR (inches)	Minimum Thickness of Select Fill Soil (feet, bgs) ¹	Thickness of Compacted Subgrade below Select Fill (inches) ²
0.75	6.5	6
1	5	6

Notes:

1. Depth measured below bottom of the slab-on-grade.
2. The subgrade to receive select fill soil should be scarified to a depth indicated above. The scarified subgrade should be compacted to 93 to 96 percent of the material's maximum standard Proctor dry density (ASTM D-698) at a workable moisture level at least 3 percentage points above optimum.

Subgrade treatment should extend at least 5-feet horizontally beyond the perimeter of the building.

Subgrade Treatment at Exterior Doorways. Subgrade treatment should extend beneath sidewalk areas that abut exterior doorways to the building. Failure to perform subgrade treatment in these areas can increase the probability of differential heaving between exterior sidewalks and doorways, resulting in exterior doors that will not or have difficulty opening outward due to “sticking” caused by heaving sidewalk slabs. Sidewalks tied to pavements and other flatworks that extend beyond the subgrades treated for PVR reduction may be subjected to movements similar to those experienced for untreated subgrades.

Subgrade Moisture. The slab subgrade is prone to drying after being exposed and should be kept moist prior to slab placement.

Moisture Barrier. A moisture barrier should be used beneath the slab foundation in areas where floor coverings will be utilized (such as, but not limited to, wood flooring, tile, linoleum, and carpeting).

Fill Related Slab Settlement. Fill will settle under its own weight. A properly constructed fill will generally settle up to 2% of the fill thickness due to its own weight and independent of external loads. That settlement begins as soon as lift placement begins. The time required for settlement to occur is a function of soil type, pore water, and drainage path conditions and therefore can vary widely. As a result, fill-related settlement should be expected before AND after construction of the slab. Slab movement related to settling fill can be reduced by allowing as much time as possible between the time the fill is placed and construction of the slab. Furthermore, we recommend survey monitoring of constructed fills be performed to verify the rate and magnitude of settlement has been reduced to an acceptable level prior to construction of slabs on the fill.

Load Related Slab Settlement. Slabs on grade will settle when subjected to load. Slab settlement is a function of soil type, load intensity, load geometry, and other factors. Upon request by the Structural Engineer for this project, settlement estimates will be provided for the specific loading application in question.

Movement Risk. Recommendations have been provided to mitigate the effects of soil movement. Some soil movement and related structural cracking and floor unevenness should be expected even after following recommendations in this report. The elimination of risk related to soil movement is typically not feasible. If this risk is intolerable, the user of this report should be prepared to utilize a structural slab suspended adequately above the subgrade surface and supported on deep foundations.

5.9 Foundation System

Appropriate Foundation Types. The following foundation types are appropriate to the site based on the geotechnical conditions encountered:

- Shallow footings (Indoor Multipurpose Arena Building, Athletics Building and Batting Cage),
- Underreamed drilled piers (batting cage),
- Straight Shaft Drilled Piers (Indoor Multipurpose Arena Building), and
- Auger Cast Piles (Indoor Multipurpose Arena Building)

Foundation Determination. Recommendations for the foundation types are presented below. Final determination of the foundation type to be utilized for this project should be made by the Structural Engineer based on loading, economic factors and risk tolerance.

Avoidance of Mixing Foundation Types. Mixing of foundation types for a given building should be avoided. Where mixing of different foundation types is required for a given building, we should be contacted to review the foundation plans prepared by the Structural Engineer prior to construction. Different foundation types can have incompatible movement characteristics.

Foundations Adjacent to Slopes. Foundations placed too close to adjacent slopes steeper than 5H:1V may experience reduced bearing capacities and/or excessive settlement. Recommendations provided herein assume foundations are not close enough to adjacent slopes in excess of 5H:1V to be detrimentally affected. Therefore, foundations closer than 5 times the depth of adjacent slopes, pits, or excavations in excess of 5H:1V should be brought to our attention in order that we may review the appropriateness of our recommendations.

Foundation Plans Review. Our office should be contacted to review the foundation plans, details and related structural loads, prior to finalizing the design to check conformance with our geotechnical recommendations.

5.9.1 Shallow Footings

General Requirement. Shallow strip and spread footing foundations may be used for support of the proposed athletics/gym building and batting cage structure if recommendations in the sections 5.7 “Existing Fill” and 5.8 “Slab-on-Grade and Subgrade Improvement” are followed.

Foundation Depth. Shallow strip and spread footing foundations should bear on select fill or native soil at a minimum depth of 4-feet below the surrounding grade.

Bearing Capacity. Continuous strip footings can be proportioned using a net dead load plus sustained live load bearing pressure of 2,500 psf or a net total load bearing pressure of 3,750 psf, whichever condition results in a larger bearing surface. Individual spread footings can be

proportioned using a net dead load plus sustained live load bearing pressure of 3,000 psf or a net total load bearing pressure of 4,500 psf, whichever condition results in a larger bearing surface. These bearing pressures are based on a safety factor of 3 and 2, respectively.

Geometry. Individual spread footings should be at least 30 inches wide and continuous strip footing foundations should be at least 16 inches wide.

Settlement. Settlement of footing foundations is influenced by several factors, including load (pressure), soil consolidation properties, depth to groundwater, geometry (width and length), depth, spacing, and quality of construction. Although a detailed settlement analysis is beyond the scope of this study, post-construction settlement for foundations, with a maximum horizontal dimension of 12-feet, constructed as described above should be about 1 inch. We should be allowed to review foundations larger than 12 feet to assess their settlement. Our settlement estimate assumes that proper construction practices are followed and there are no overlapping stresses due to adjacent footings. To mitigate any overlapping stresses due to adjacent footings, we recommend a minimum clear spacing of one footing width (width of larger footing) between adjacent footings.

Lateral Resistance. Resistance to lateral loads may be provided by the soil adjacent to the footings. We recommend using an equivalent fluid weight of 180 pcf for lateral resistance. A coefficient of sliding friction of 0.25 between the concrete footings and underlying soil may be combined with the passive resistance. Appropriate safety factors should be utilized by the structural engineer for lateral stability of the shallow footings.

Construction and Observation. The geotechnical engineer should monitor foundation construction to verify conditions are as anticipated and that the materials encountered are suitable for support of foundations. Soft or unsuitable soils encountered at the foundation bearing level should be removed to expose suitable, firm soil. Foundation excavations should be dry and free of loose material. Excavations for foundations should be filled with concrete before the end of the workday or sooner if necessary to prevent deterioration of the bearing surface. Prolonged exposure or inundation of the bearing surface with water will result in changes in strength and compressibility characteristics. If delays occur, the excavation should be deepened as necessary and cleaned, in order to provide a fresh bearing surface. If more than 24 hours of exposure of the bearing surface is anticipated in the excavation, a “mud slab” should be used to protect the bearing surfaces. If a mud slab is used, the foundation excavations should initially be over-excavated by approximately 4 inches and a lean concrete mud slab of approximately 4 inches in thickness should be placed in the bottom of the excavation immediately following exposure of the bearing surface by excavation. The mud slab will protect the bearing surface, maintain more uniform moisture in the subgrade, facilitate dewatering of excavations if required and provide a working surface for the placement of formwork and reinforcing steel.

5.9.2 *Underreamed Drilled Piers*

General. Underreamed drilled pier foundations bearing in native soil may be utilized at this site for the proposed batting cage structure provided that recommendations in the sections 5.7 “Existing Fill” and 5.8 “Slab-on-Grade and Subgrade Improvement” are followed.

Foundation Depth. We recommend that underreamed piers should bear in native soil at a depth of 9-feet below the existing grade.

Some field adjustments in the depth of the underreamed piers may be required in some areas to maintain the bottom of the piers above any possible groundwater seepage and caving soils encountered near the bearing depth. Adjustments in the depths of the piers should be approved and observed in the field by UES personnel.

Bearing Capacity. The piers may be proportioned using a net dead load plus sustained live load bearing pressure of 3,000 psf or a net total load pressure of 4,500 psf, whichever condition results in a larger bearing surface. These bearing pressures are based on a safety factor of 3 and 2, respectively, against shear failure of the foundation bearing soils.

Settlement. Settlement of underreamed drilled pier foundations is influenced by several factors, including load (pressure), soil consolidation properties, depth to groundwater, geometry (width and length), depth, spacing, and quality of construction. Although a detailed settlement analysis is beyond the scope of this study, soil related settlement for foundations, 8-feet in diameter or less, constructed as described above should be about 1 inch. We should be allowed to review piers greater than 8-feet in diameter to assess their settlement. However, pier foundation settlement is heavily affected by construction quality and, as a result, oftentimes exceeds 1 inch. Our settlement estimate assumes that proper construction practices are followed and there are no overlapping stresses due to adjacent piers. To mitigate any overlapping stresses due to adjacent piers, we recommend a minimum clear spacing of one bell diameter (larger bell diameter) between adjacent piers.

Lateral Capacity. Because of the potential for the upper two feet of the soil to shrink and pull away from drilled piers during dry periods, we recommend soil resistance to lateral loads on drilled piers be ignored in the upper 2-feet of the soil profile. For resistance of lateral loads on drilled piers, we recommend the following LPILE design parameters.

Depth (feet) ¹	Soil Type	Effective Soil Unit Weight (pcf) ²	Allowable Cohesion, c (psf) ³	Angle of Internal Friction, ϕ (degrees)	Strain at $\frac{1}{2}$ Peak Strength, ϵ_{50}	Soil Modulus Parameter, k (for lateral loads) (pci)
0 - 2	Clay	120	0	0	NA	NA
2 - 9	Clay	120	700	0	0.007	300

Notes:

1. Depth below existing grade.
2. Effective soil unit weight based on assumed groundwater depth greater than 9-feet.
3. Factor of safety 3 is included in the recommended cohesion parameter.

Uplift. Each pier should contain full length reinforcing steel and should be designed to resist the uplift pressure (soil-to-pier adhesion) due to potential soil swell along the shaft from post-construction heave and other uplift forces applied by structural loadings. The magnitude of uplift adhesion due to soil swell along the pier shaft cannot be defined accurately and can vary according to the actual in-place moisture content of the soils during construction. It is estimated this uplift adhesion will not exceed about 1,000 psf. This soil adhesion is approximated to act uniformly over the upper 8 ft of the pier shaft in contact with clayey soils.

Uplift Resistance. The uplift force due to swelling of active clays should be resisted by the underreamed portion of the pier. The underreamed portion should be at least two (2) and not exceeding 3 times the diameter of the shaft. The minimum clear spacing between edges of adjacent piers should be at least one (1) underream diameter, based on the larger underream.

Shaft/Diameter Ratio. The piers should be provided with an underream diameter to shaft diameter ratio not less than 2 to 1 and not greater than 3 to 1. There is an inherent risk of bell collapse during construction. Unforeseen sand and silt pockets/seams and/or laminated/slickensided structures in clays or variable groundwater conditions can cause significant loss of tensile strength resulting in bell collapse. Therefore, UES recommends test piers with underreams be constructed prior to finalizing the foundation design to assess the risk of bell collapse.

Grade Beams. Grade beams may be used to support loads by spanning the drilled-and-underreamed piers. Grade beams should be designed to transfer loads to the piers as a simply supported beam, ignoring any support from the soil between the piers. The depth of exterior and interior grade beams can be varied according to the structural requirements of the floor slab. However, we recommend that exterior grade beams extend at least 12 inches below the lowest adjacent grade. Additionally, backfill soils placed adjacent to grade beams must be compacted as outlined in Section 5.5.6 of this report.

In general, where the subgrade is improved and the floor slab is supported on-grade, we do not recommend the use of void boxes below grade beams and caps because of the potential to collect free water within the void space, especially if replacing the excavated subgrade soils with relatively pervious select fill materials.

Construction Observation. The construction of all piers should be observed as a means to verify compliance with design assumptions and to verify:

1. the bearing stratum;
2. underream size;
3. the removal of all smear zones and cuttings;
4. that groundwater seepage, when encountered, is correctly handled; and
5. that the shafts are vertical (within acceptable tolerance).

We should be contacted for further evaluation and recommendations if soils other than those anticipated to be encountered at the design foundation bearing level, or if groundwater seepage and/or underream collapse occurs.

Groundwater. Groundwater was initially encountered at depths as shallow as 10 feet bgs in borings during drilling and rose to depths as shallow as 9 feet within 15 minutes. Groundwater may be encountered during pier excavation and the risk of groundwater seepage is increased during or after periods of precipitation. Submersible pumps may be capable of controlling seepage in the pier excavation to allow for concrete placement.

Applicable TxDOT Standards. Drilled pier foundations should be constructed in accordance with the requirements of TxDOT Item 416 (standard specification for construction of drilled pier foundations).

Concrete Placement. Concrete should be placed in the shafts immediately after excavation to reduce the risk of significant groundwater seepage, deterioration of the foundation-bearing surface and underream collapse. Concrete should have a slump of 5 to 7 inches and should not be allowed to strike the shaft sidewall or steel reinforcement during placement.

5.9.3 *Straight Shaft Drilled Piers*

Applicability. Straight shaft drilled pier foundations as described in this section are appropriate for the proposed Indoor Multipurpose Arena if recommendations in sections 5.7 “Existing Fill” and 5.8 “Slab-on-Grade and Subgrade Improvement” are followed. Straight shaft drilled piers should have adequate length to resist axial, lateral, and uplift forces.

Axial Resistance. For the design of the drilled shaft foundations, we recommend the following geotechnical parameters:

Axial Capacities of Straight Shaft Drilled Piers				
Depth (feet) ¹	Soil Type	Effective Soil Unit Weight (pcf) ²	Allowable Skin Friction (psf) ³	Allowable End Bearing Capacity (psf) ^{4 & 5}
0 - 8	CLAY	125	Ignore	Ignore
8 - 13	CLAY	60	300	3,000
13-40	CLAY/SAND	60	400	4,000
40 - 55	CLAY	60	700	7,500

Notes:

1. Depth below existing ground surface.
2. Effective soil unit weight is based on assumed groundwater depth of 8 feet bgs.
3. Allowable Skin Friction is based on a factor of safety = 2. It is recommended for shaft drilled piers constructed using either the slurry method or temporary casing. If a permanent casing is used, a factor of 0.6 should be applied to the recommended allowable skin friction.
4. Allowable End Bearing Capacity based on a factor of safety = 3.
5. Recommendations assume the foundation depth is greater than or equal to 4 times the foundation width.

Axial resistance of piers should be ignored up to 3 feet below the top of the drilled piers (bottom of the pier caps) and within the moisture conditioned soil.

Lateral Resistance. For resistance of lateral loads on straight shaft drilled piers, we recommend the following LPILE design parameters.

Depth (feet bgs) ¹	LPILE Parameters ²
0 - 5	LPILE Material Type: Clay Effective Soil Unit Weight: 125 pcf Undrained Cohesion: Ignore Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): Ignore p-y Modulus (k): Ignore
5 - 8	LPILE Material Type: Stiff Clay Effective Soil Unit Weight: 125 pcf Undrained Cohesion: 1,500 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.007 p-y Modulus (k): 300 pci (static), 100 pci (cyclic)
8-13	Soil Type: Submerged Stiff Clay Effective Soil Unit Weight: 60 pcf Undrained Cohesion: 1,500 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.007 p-y Modulus (k): 300 pci (static), 100 pci (cyclic)
13-40	LPILE Material Type: Medium dense Submerged Sand and Stiff Clay For Sand: Effective Soil Unit Weight: 60 pcf Friction Angle (ϕ): 32 degrees p-y Modulus (k): 60 pci (cyclic) For Clay: Soil Type: Submerged Stiff Clay Effective Soil Unit Weight: 60 pcf Undrained Cohesion: 2,000 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.007 p-y Modulus (k): 500 pci (static), 200 pci (cyclic)
40-55	Soil Type: Submerged Very stiff Clay Effective Soil Unit Weight: 60 pcf Undrained Cohesion: 2,500 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.005 p-y Modulus (k): 800 pci (static), 300 pci (cyclic)
<p><u>Notes:</u></p> <ol style="list-style-type: none"> 1. Depth below <u>existing</u> ground surface. 2. Effective soil unit weight based on assumed groundwater depth of 8 feet bgs. 	

Lateral resistance of piers should be ignored up to 3 feet below the top of the drilled piers (bottom of the pier caps) and within the moisture conditioned soil.

Uplift. The uplift force on the piers due to swelling of the active clays can be approximated by assuming a uniform uplift pressure of 1,000 psf acting over the perimeter of the shaft to a depth of 8 feet. The shafts should contain enough full-length reinforcing steel to resist uplift forces.

Pier Spacing. Piers should not be spaced closer than three shaft diameters center to center to use the above-recommended bearing capacities (diameter of larger shaft). A reduction factor of 75 percent should be used for piers placed 2 to 3 diameters apart, measured from center to center. A reduction factor of 40 percent should be used for piers placed less than 2 shaft

diameters apart, measured center to center. The reduction factors should be applied to allowable end bearing and allowable skin friction.

Settlement. Foundation settlement for drilled piers constructed as described herein should be about 1 inch or less.

Groundwater. Groundwater was initially encountered at depths as shallow as 10 feet bgs in borings during drilling and rose to depths as shallow as 9 feet within 15 minutes. Further, groundwater was encountered at depths as shallow as 2-feet bgs in the installed piezometer. Groundwater should be expected to be encountered during pier excavation and the risk of groundwater seepage is increased during or after periods of precipitation. Submersible pumps may be capable of controlling seepage in the pier excavation to allow for concrete placement. **If water-bearing granular soil layers are encountered, temporary casing and/or slurry displacement method will likely be required for drilled shafts.**

Applicable TxDOT Standards. Drilled pier foundations should be constructed in accordance with the requirements of TxDOT Item 416 (standard specification for construction of drilled pier foundations). ***This specification includes requirements for construction using casing or the slurry displacement method, as appropriate.***

Construction Observation. The construction of all piers should be observed to verify compliance with design assumptions and to verify:

1. the bearing stratum;
2. the removal of all smear zones and cuttings;
3. that groundwater seepage, when encountered, is correctly handled;
4. that the shafts are vertical (within acceptable tolerance); and
5. ensure that the top of the shafts in contact with clay are not enlarged (mushroom-shaped).

Concrete Placement. Concrete should be placed immediately after the excavation has been completed. In no event should a pier excavation be allowed to remain open for more than 8 hours. Concrete should have a slump of 5 to 7 inches and should not be allowed to strike the shaft sidewall or steel reinforcement during placement.

5.9.4 Auger Cast Piles

Applicability. Recommendations in this section are applicable to auger cast piles for supporting the proposed classroom and MP facility building if recommendations in sections 5.7 “Existing Fill” and 5.8 “Slab-on-Grade and Subgrade Improvement” are followed. Auger cast piles should have adequate length to resist axial, lateral, and uplift forces.

Description. Auger-cast piles derive their capacity from a combination of end bearing resistance and skin friction resistance. Auger-cast piles are installed by advancing a hollow-stem auger to the desired depth and then pumping high-strength flowable cement grout into the hole through the auger, as the auger is slowly withdrawn. The grout is placed under relatively high pressure, and a positive head of grout is maintained above the bottom of the auger during auger extraction. After the auger is removed, reinforcing steel is placed. From our experience, 18-inch to 24-inch diameter piles are commonly used for support of moderate to heavy structural loads.

Axial Resistance. For the axial loading design of auger cast piles, we recommend the following:

Axial Capacities of Auger Cast Piles				
Depth (feet) ¹	Soil Type	Effective Soil Unit Weight (pcf) ²	Allowable Skin Friction (psf) ³	Allowable End Bearing Capacity (psf) ^{4 & 5}
0 - 8	CLAY	125	Ignore	Ignore
8 - 13	CLAY	60	400	3,000
13-40	CLAY/SAND	60	500	4,000
40 - 55	CLAY	60	800	7,500

Notes:

1. Depth below existing ground surface.
2. Effective soil unit weight based on assumed groundwater depth of 8 feet bgs.
3. Allowable Skin Friction based on a factor of safety = 2.
4. Allowable End Bearing Capacity based on a factor of safety = 3.
5. Recommendations assume the foundation depth is greater than or equal to 4 times the foundation width.

Axial resistance of piers should be ignored up to 3 feet below the top of the piles (bottom of the pile caps) and within the moisture conditioned soil.

Lateral Resistance. For resistance of lateral loads on auger cast piles, we recommend the following LPILE design parameters.

Depth (feet bgs) ¹	LPILE Parameters ²
0 - 5	LPILE Material Type: Clay Effective Soil Unit Weight: 125 pcf Undrained Cohesion: Ignore Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): Ignore p-y Modulus (k): Ignore
5 - 8	LPILE Material Type: Stiff Clay Effective Soil Unit Weight: 125 pcf Undrained Cohesion: 1,500 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.007 p-y Modulus (k): 300 pci (static), 100 pci (cyclic)
8-13	Soil Type: Submerged Stiff Clay Effective Soil Unit Weight: 60 pcf Undrained Cohesion: 1,500 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.007 p-y Modulus (k): 300 pci (static), 100 pci (cyclic)
13-40	LPILE Material Type: Medium dense Submerged Sand and Stiff Clay For Sand: Effective Soil Unit Weight: 60 pcf Friction Angle (ϕ): 32 degrees p-y Modulus (k): 60 pci (cyclic) For Clay: Soil Type: Submerged Stiff Clay Effective Soil Unit Weight: 60 pcf Undrained Cohesion: 2,000 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.007 p-y Modulus (k): 500 pci (static), 200 pci (cyclic)
40-55	Soil Type: Submerged Very stiff Clay Effective Soil Unit Weight: 60 pcf Undrained Cohesion: 2,500 psf Strain @ $\frac{1}{2}$ Peak Strength (ϵ_{50}): 0.005 p-y Modulus (k): 800 pci (static), 300 pci (cyclic)
<u>Notes:</u>	
<ol style="list-style-type: none"> 1. Depth below <u>existing</u> ground surface. 2. Effective soil unit weight based on assumed groundwater depth of 8 feet bgs. 	

Lateral resistance of piers should be ignored up to 3 feet below the top of the piles (bottom of the pile caps) and within the moisture conditioned soil.

Uplift. The uplift force on the piles due to swelling of the active clays can be approximated by assuming a uniform uplift pressure of 1,000 psf acting over the perimeter of the pile to a depth of 8 feet. The piles should contain enough full-length reinforcing steel to resist uplift forces.

Pile Spacing. Auger cast piles should not be spaced closer than four shaft diameters center to center to use the above recommended bearing capacities (diameter of larger shaft). A reduction factor of 75 percent should be used for piles placed 2 to 4 diameters apart, measured center to center. A reduction factor of 40 percent should be used for piles placed less than 2 shaft diameters apart, measured center to center. The reduction factors should be applied to allowable skin friction.

Settlement. Foundation settlement for auger cast piles constructed as described herein should be less than one-half inch.

Pile Load Tests. An auger-cast pile test program should be performed at this site prior to construction. The test program should consist of one test pile per class of pile. If performed, the load tests should be performed in areas unaffected by future foundations. To maximize the working load capacity (and thereby reduce the number of production piles), we recommend the pile load tests be performed to pile failure. If the structure will exert significant lateral loads, it will be necessary to perform a lateral load test. The purpose of the test program is to:

1. Verify equipment and procedures necessary to install the piles.
2. Perform pile load tests to verify the maximum allowable capacity of pile, thereby potentially reducing the number of production piles required for the project.
3. Document pile installation procedures, methods, and results to assist in plan and specification preparation.
4. Reduce the risk to the owner of claimed extra compensation.

Reaction piles used during pile load tests should not be utilized as production piles after load tests are complete. The reaction piles will be subject to uplift forces and uplift displacements during the load test, and their axial capacity for support of service loads can be substantially reduced.

Pile Test Monitoring. UES should be retained to design, monitor, and evaluate an auger-cast pile test program for this project, and to assist in auger-cast pile specification preparation. In addition, auger-cast pile installation should be monitored by UES to verify conditions are as anticipated, verify piles depths and grout takes, and to verify piles were installed in accordance with the test program and the developed specifications.

Contractor Experience. The performance and success of auger-cast piles is highly dependent on the quality of the installed pile. We recommend a contractor with significant experience in installation of auger-casts piles be retained for the project. The contractor should submit his proposed pile installation procedures for review prior to starting the work. Field quality control during construction is also important. Installation procedures, grout pressure, and grout volume should be monitored. Also, the contractor proposed alternatives (pile diameter,

length, and capacities) should be verified by additional pile load tests at the contractor's expense.

5.10 Pavement

General. Recommendations for rigid pavement and preparation of the pavement subgrade are provided in the following sections. A traffic study indicating the number and type of vehicles on which to base the pavement design was not provided. Therefore, our recommendations are based upon our experience with similar projects assuming normal vehicular loading.

Civil and Drainage Consideration. Pavement design is the responsibility of the project Civil Engineer. We have recommended preliminary pavement sections based on geotechnical information and assumed traffic information in accordance with the American Association of State Highway and Transportation Officials (AASHTO) Guidelines for Design of Pavement Structures dated 1993. According to AASHTO design methodology, the pavement design thickness considers pavement performance, traffic, subgrade soils, pavement materials, environment, drainage and reliability. The applicability of our assumptions should be reviewed and approved by the project Civil Engineer before the pavement section is finalized. The recommended pavement sections assume good drainage quality prevails over the life of the pavement and that the pavement subgrade is exposed to moisture levels approaching saturation less than 25 percent of the time. Good drainage is defined by AASHTO as "the ability to remove water from the pavement within one (1) day". Therefore, it is critical that the project Civil Engineer provide appropriate pavement drainage design to assure validity of the assumed drainage conditions.

5.10.1 Rigid Pavement

Pavement Thickness and Reinforcement. Portland cement concrete (PCC) with a minimum 28-day compressive strength of 3,500 pounds per square inch (psi) should be utilized for rigid pavement. Grade 60 reinforcing steel should be utilized in the transverse and longitudinal directions. The following pavement thicknesses and reinforcing are recommended for a 20-year pavement life:

Paving Use	Thickness (inches)	Reinforcing
Parking Areas for Automobiles and Light Trucks	5	No. 3 bars spaced on 22-inch intervals
Fire Lane, Bus Lane and Drive Lanes and Areas Subjected to Light to Medium Trucks	6	No. 3 bars spaced on 18-inch intervals
Areas Receiving Heavy Trucks and Dumpsters	7	No. 3 bars spaced on 16-inch intervals
Note:		
1. Recommended pavement reinforcement is in accordance with ACI guidelines. 2. Pavement subgrade should be chemically stabilized per Section 5.10.2.		

Pavement Joints. Contraction joints should be spaced at about 25 times the pavement thickness up to a maximum of 15 feet in any direction. Saw cut control joints should be cut within 6 to 12 hours of concrete placement. ACI recommendations indicate that regularly spaced expansion joints may be deleted from concrete pavements. Therefore, the installation of expansion joints is optional and should be evaluated by the Civil Engineer. Dowels should have a diameter equal to $\frac{1}{8}$ the slab thickness, be spaced on 12-inch intervals, and be embedded at least 9 inches. Appropriate joint sealant is recommended to keep water from saturating the pavement subgrade and to prevent the introduction of incompressible material into the joints. Routine monitoring and maintenance of joint sealants are recommended. Where not specified herein, concrete pavement should comply with Texas Department of Transportation (TxDOT) Standard Specifications, Item 360, "Concrete Pavement", or local equivalent.

5.10.2 Pavement Subgrade

Potential Vertical Soil Movements. We have assumed that site treatment as recommended in Section 5.8 – “Subgrade Improvement and Slab-on-Grade” will not be performed within the pavement areas for this project. As a result, pavements will be subjected to the calculated PVR for this site. Based on the information gathered during this study, a pavement constructed on-grade will be subject to potential vertical movements of about 4-inches. Because heave is generally associated with a source of water, it can occur differentially. Edge lift, excessive cracking, corner breaks, and poor ride quality are just a few of the many examples of pavement issues that can occur when in-situ PVR values are high. We should be contacted to provide PVR mitigation strategies to help reduce potential movements if desired. Strategies available for reducing potential soil movements include soil stabilization with lime or cement, removal of the on-site expansive soils and replacement with select fill.

Subgrade Preparation. Lean clay and silty soils are expected to be encountered or exposed at pavement subgrade. The pavement subgrade should be placed in loose lifts not exceeding 8-inches and should be uniformly compacted to a minimum of 95 percent maximum dry density (per ASTM D-698) and within ± 2 percent of the optimum moisture content.

Where clayey soils are encountered, we recommend the subgrade be stabilized using the following:

Reagent	Application Rate (Pounds per square yard)	Application Depth (inches)
Lime	27	6

Lime stabilization should be performed in accordance with TxDOT Standard Specifications, Item 260, "Lime Stabilized Subgrade", or local equivalent.

Where silty soils are encountered, we recommend the subgrade be stabilized using either of the following:

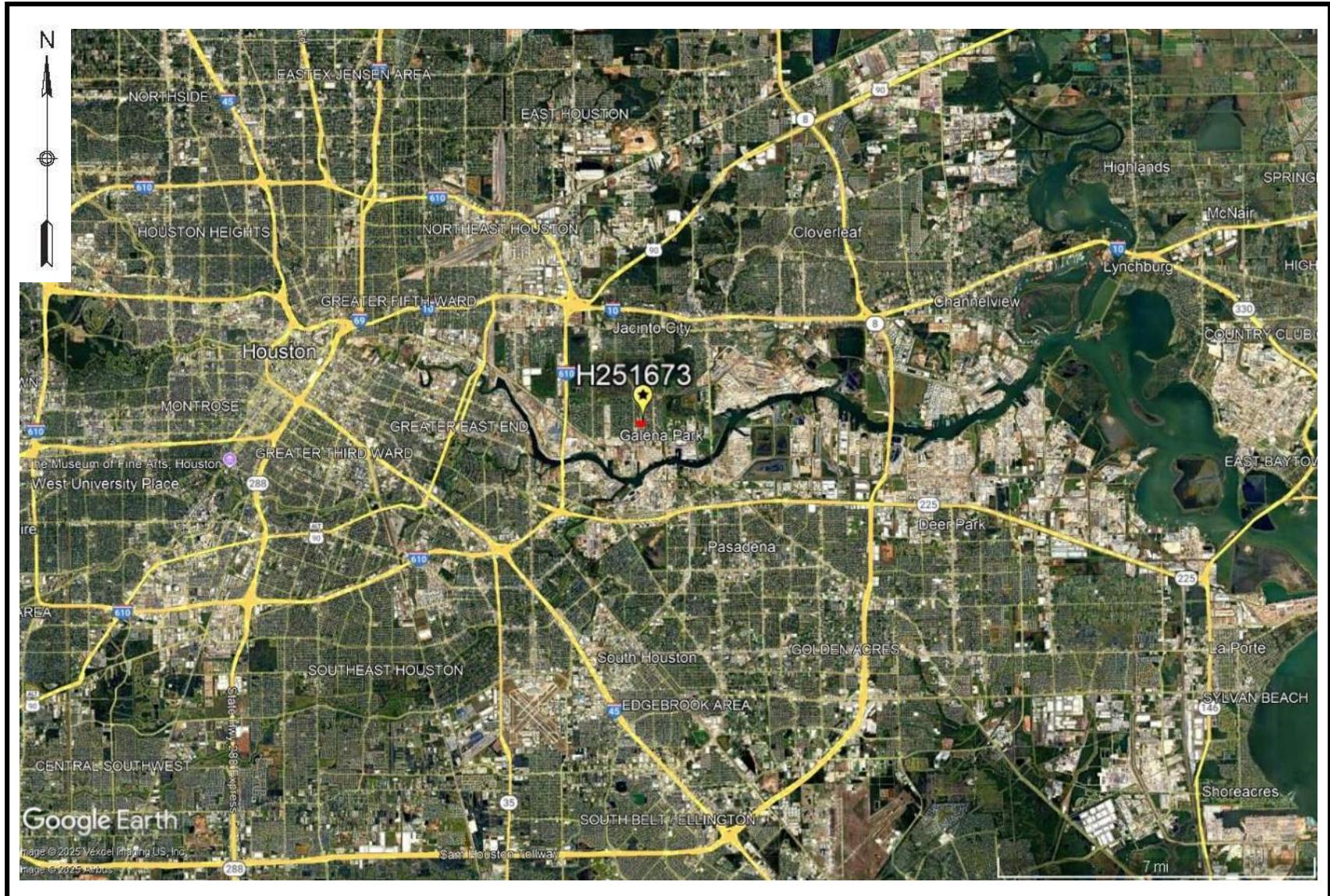
Reagent	Application Rate (Pounds per square yard)	Application Depth (inches)
Portland Cement	23	6
70% Flyash/30% Lime Blend	36	6

Cement stabilization should be performed in accordance with TxDOT Standard Specifications, Item 275, "Portland Cement Treated Materials" or local equivalent, and lime-fly ash stabilization should be performed in accordance with TxDOT Standard Specifications, Item 265, "Lime-Fly Ash Treatment of Materials Used as Subgrade" or local equivalent.

This 6- or 8-inches of treatment is a required part of the pavement design and is not a part of site and subgrade preparation for wet/soft subgrade conditions.

Cautionary Note Regarding Stabilized Subgrades. Stabilized subgrades are not suitable for supporting heavy construction traffic. Stabilized subgrades that have been subjected to heavy construction traffic should be re-inspected and re-stabilized as necessary prior to the construction of overlying pavement.

6.0 LIMITATIONS


Professional services provided in this geotechnical exploration were performed, findings obtained, and recommendations prepared in accordance with generally accepted geotechnical engineering principles and practices. The scope of services provided herein does not include an environmental assessment of the site or investigation for the presence or absence of hazardous materials in the soil, surface water or groundwater. UES, upon written request, can be retained to provide these services.

UES is not responsible for conclusions, opinions or recommendations made by others based on this data. Information contained in this report is intended for the exclusive use of the Client (and their designated design representatives) and is related solely to design of the specific structures outlined in Section 1.0. No party other than the Client (and their designated design representatives) shall use or rely upon this report in any manner whatsoever unless such party shall have obtained UES's written acceptance of such intended use. Any such third party using this report after obtaining UES's written acceptance shall be bound by the limitations and limitations of liability contained herein, including UES's liability being limited to the fee paid to it for this report. Recommendations presented in this report should not be used for design of any other structures except those specifically described in this report. In all areas of this report in which UES may provide additional services if requested to do so in writing, it is presumed that such requests have not been made if not evidenced by a written document accepted by UES. Further, subsurface conditions can change with passage of time. Recommendations contained herein are not considered applicable for an extended period of time after the completion date of this report. It is recommended our office be contacted for a review of the contents of this report for construction commencing more than one (1) year after completion of this report. Non-compliance with any of these requirements by the Client or anyone else shall release UES from any liability resulting from the use of, or reliance upon, this report.

Recommendations provided in this report are based on our understanding of information provided by the Client about characteristics of the project. If the Client notes any deviation from the facts about project characteristics, our office should be contacted immediately since this may materially alter the recommendations. Further, UES is not responsible for damages resulting from the workmanship of designers or contractors. It is recommended the Owner retain qualified personnel, such as a Geotechnical Engineering firm, to verify construction is performed in accordance with plans and specifications.

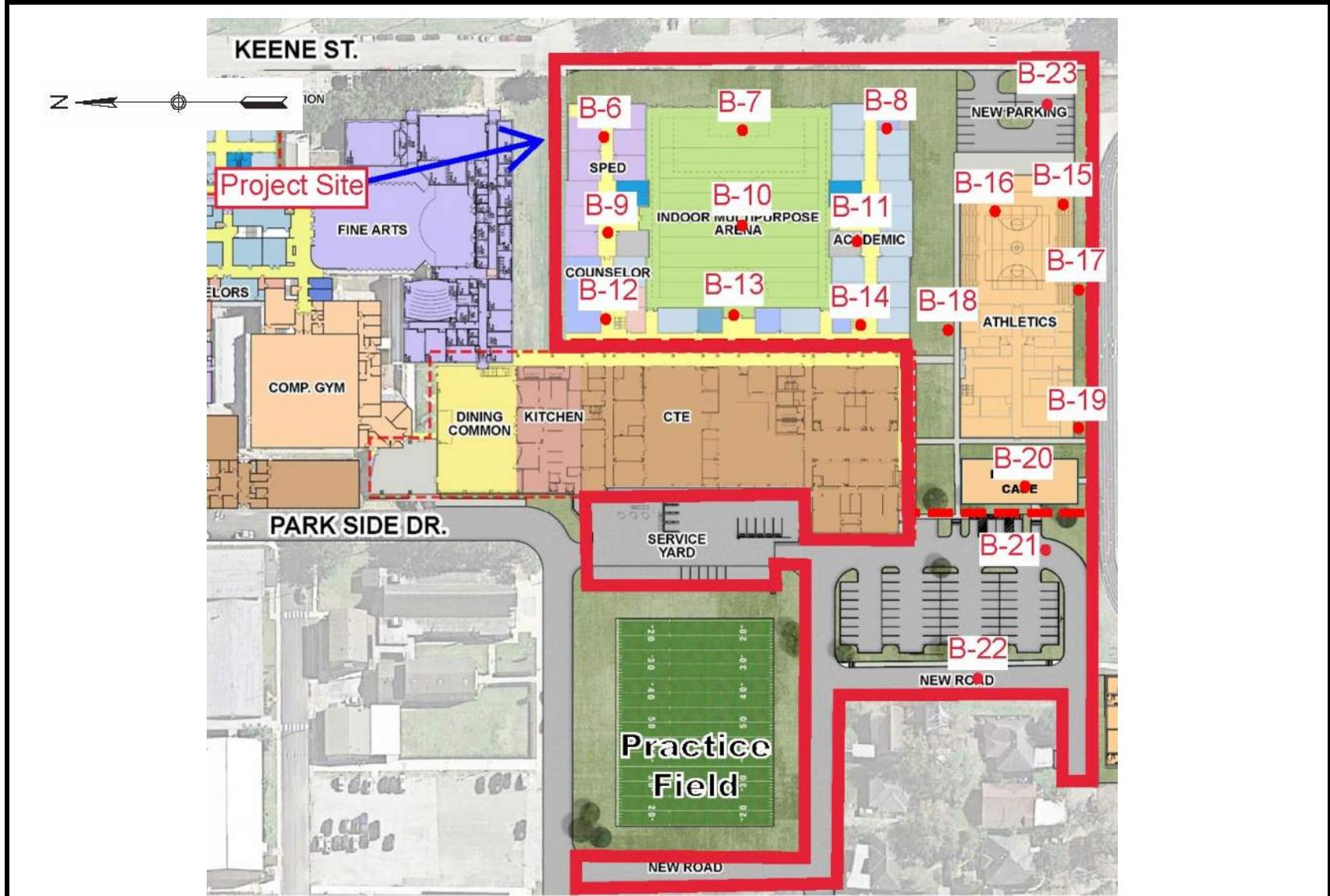
Appendix A - Project Location Diagrams

PROJECT LOCATION DIAGRAM - GENERAL

UES Project No. H251673-2

Galena Park High School – Phase 3B

PROJECT LOCATION DIAGRAM - LOCAL


UES Project No. H251673-2

Galena Park High School – Phase 3B

Appendix B - Boring Location Diagram

BORING LOCATION DIAGRAM

Appendix C - Boring Logs and Laboratory Results

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/4/25 **COMPLETED** 4/4/25

CONTRACTOR UES

METHOD

LOGGED IN

SEARCHED BY: JK CHECKED BY: JK

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION _____ **NORTHING** _____

GROUND WATER LEVELS: EASTING _____

 INITIALLY ENCOUNTERED 18.0 ft

AFTER 15 MIN. 13.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	ATTERBERG LIMITS											
					BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit	Plastic Limit	Plasticity Index	Fines Content (%)	
0		SANDY LEAN CLAY (CL) FILL - Stiff, reddish brown, gray, with root fibers. FAT CLAY (CH) - Firm to stiff, dark gray.	ST		3.00					17	26	13	13	61		
6		Reddish brown, dark brown from 6 to 13 feet.	ST		2.00					107	21					
10			ST		1.50						23					
13		Brownish yellow, light gray from 13 to 18 feet.	ST		2.00						34	84	25	59		
18			ST		2.00						32					
20		LEAN CLAY (CL) - Soft to stiff, light gray, reddish brown.	ST		3.00						20					
23			ST		2.00							20				
28		With sand seams from 23 to 28 feet.	ST		1.00											
30		FAT CLAY (CH) - Very stiff to hard, light gray, brownish yellow.	ST		4.50+							22				
38			ST		3.50							22				
43		Reddish brown, brownish yellow, light gray from 38 to 43 feet.	ST		3.00							24				
43		Brownish yellow, light gray from 43 to 48 feet.	ST		4.00							25				
48			ST		4.50											
48		Reddish brown from 48 to 60 feet. With sand seams from 48 to 58 feet.	ST		4.50+							19				
58			ST		4.50+											
60		Bottom of hole at 60.0 feet.	ST		4.50+							5.4	45	111	19	24

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/14/25 COMPLETED 4/14/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 18.0 ft

▼ AFTER 15 MIN. 12.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS				
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit
0		FAT CLAY WITH SAND (CH) FILL - Dark gray.	AU								17	
4		FAT CLAY (CH) - Soft to stiff, dark gray.	ST			1.00					21	
5		Gray from 4 to 8 feet.	ST			1.50					21	53
8			ST			1.50					21	18
10		Reddish brown, with gravel from 8 to 13 feet.	ST			2.50					28	35
13			ST			2.00					21	
15		Light gray, brownish yellow, reddish brown from 13 to 18 feet.	ST			2.00					21	
18			ST			2.50					20	
20		Light gray, brownish yellow from 18 to 30 feet.	ST			3.00					18	
25			ST			2.50					21	
30		Bottom of hole at 30.0 feet.										

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/24/25 COMPLETED 4/24/25

CONTRACTOR UES

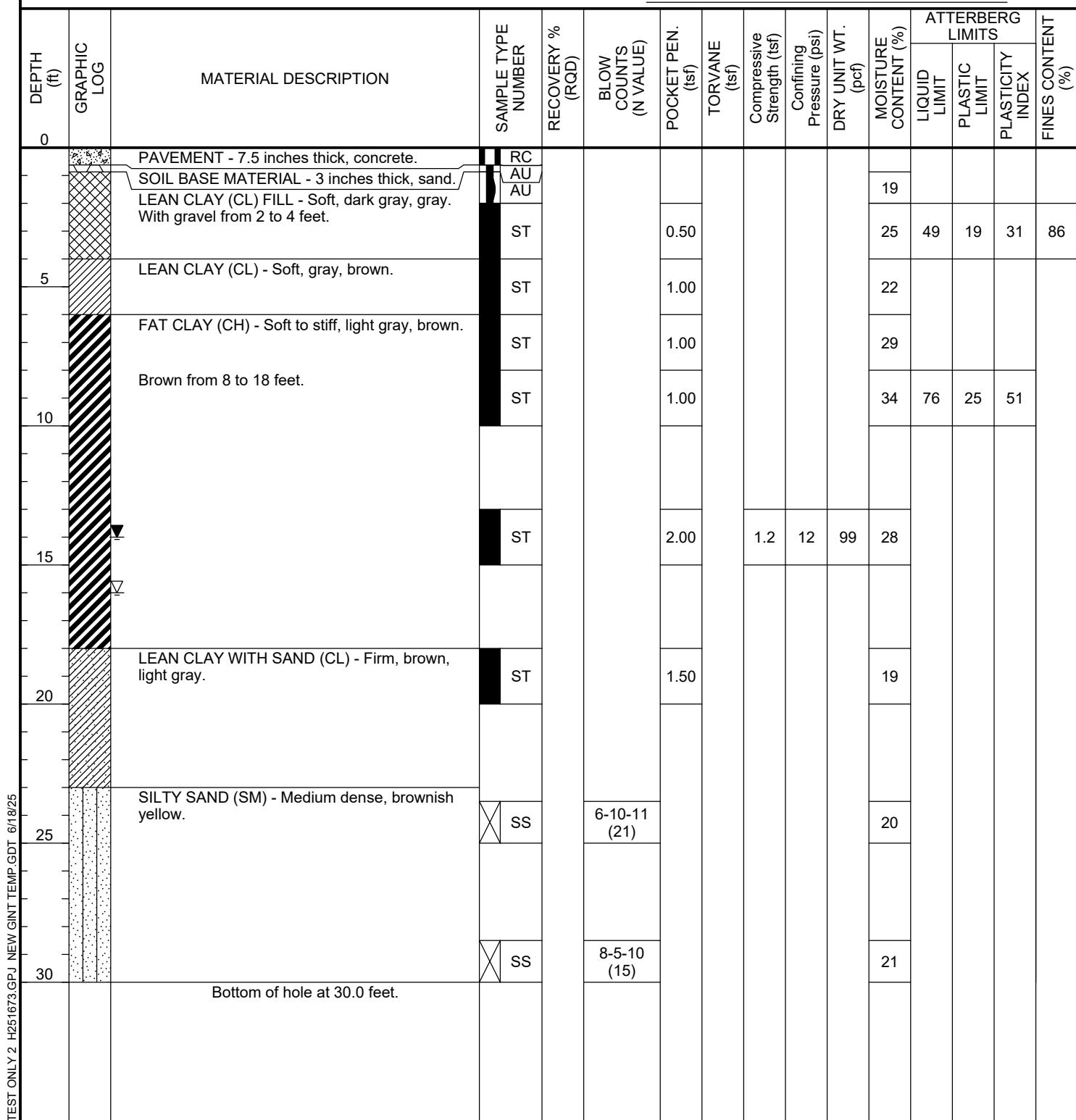
METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547


GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 16.0 ft

▽ AFTER 15 MIN. 14.0 ft

AFTER ---

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/14/25 COMPLETED 4/14/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 19.0 ft

▼ AFTER 15 MIN. 12.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS						
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit	Plastic Limit	Plasticity Index
0		FAT CLAY WITH SAND (CH) FILL - Dark gray, brown.	AU							20				
5		FAT CLAY (CH) - Soft to stiff, dark gray.	ST			1.00		1.2		100	25			
10		Reddish brown from 8 to 28 feet.	ST			1.50				27	69	23	47	91
15			ST			1.00								
20	▽		ST			1.50		1.2		88	32			
25	▽		ST			3.00				26				
30		Light gray, brownish yellow from 28 to 30 feet.	ST			2.50				26				
		Bottom of hole at 30.0 feet.				2.50				28				
						2.50				18				

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/4/25 COMPLETED 4/4/25

CONTRACTOR UES

METHOD

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 23.0 ft

▽ AFTER 15 MIN. 21.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	ATTERBERG LIMITS				
											LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)	
0		SILTY CLAYEY SAND (SC-SM) FILL - Stiff, brown, gray, light gray. FAT CLAY (CH) - Firm to stiff, dark gray. Reddish brown from 6 to 28 feet.	ST			3.00					12	22	17	5	30
			ST			1.50					28				
			ST			1.50					25				
			ST			1.50					34	81	31	50	
			ST			2.00					31				
						2.50					25				
10						2.00					23				
			ST								20				
			ST			3.00					20				
			ST			2.50					20				
20		LEAN CLAY WITH SAND (CL) - Stiff, brownish yellow, light gray.	ST								26				
			ST								48				
			ST												
30		SILTY SAND (SM) - Medium dense, brownish yellow.	SS		7-11-15 (26)										
			SS		8-10-10 (20)										
			SS												
40		Light brown from 38 to 43 feet.	SS												
			ST			4.50									
			ST			4.50									
			ST			4.50									
50		FAT CLAY (CH) - Very stiff, reddish brown.	ST			4.50									
			ST			4.50									
			ST			4.50									
60		Bottom of hole at 60.0 feet.	ST			4.50									

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/28/25 COMPLETED 4/28/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY G.C. CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 18.0 ft

▼ AFTER 15 MIN. 18.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ATTERBERG LIMITS			FINE CONTENT (%)
												LIQUID	PLASTIC	PLASTICITY	
0		LEAN CLAY (CL) FILL - Stiff, dark brown, gray, light gray, reddish brown, with gravel and organic matter.	ST			2.00					18				
		FAT CLAY (CH) FILL - Soft, dark gray, light gray, with gravel, organic matter and sand seams.	ST			1.00					19				
5		FAT CLAY (CH) - Stiff to hard, light gray, brownish yellow.	ST			3.50					21	59	20	40	
		With ferrous nodules from 6 to 8 feet.	ST			4.00					21				
		Brownish yellow, reddish brown from 8 to 13 feet.	ST			2.50		1.5		99	24				
10															
		Reddish brown, with sand seams from 13 to 18 feet.	ST			4.50+					18				
15															
		Brown, light gray from 18 to 28 feet.	ST			3.00					25				
20															
											21				
25						3.00									
											22				
30		SILTY SAND (SM) - Medium dense, light gray.	SS		8-7-7 (14)										
		Bottom of hole at 30.0 feet.													

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/18/25 COMPLETED 4/18/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 12.0 ft

▽ AFTER 15 MIN. 11.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS		LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
								Compressive Strength (tsf)	Confining Pressure (psi)				
0		LEAN CLAY WITH SAND (CL) FILL - Gray, brown with gravel.	AU							16			
5		LEAN CLAY (CL) - Soft to hard, dark gray.	ST			1.00		1.8		103	26	40	15
6		Reddish brown from 6 to 13 feet.	ST			1.00				20			25
8		With calcareous deposits from 8 to 13 feet.	ST			1.50				20			
10			ST			1.50				17	37	17	20
12													95
13													
15		Light brown, brownish yellow from 13 to 18 feet.	ST			1.00		1.6		114	16		
18			ST			1.00							
20		Light gray, brownish yellow from 18 to 30 feet.	ST			3.00							
25			ST			4.50+							
30		Bottom of hole at 30.0 feet.				4.50+							

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/18/25 COMPLETED 4/18/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 11.0 ft

▽ AFTER 15 MIN. 10.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS			
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	LIQUID LIMIT
0		LEAN CLAY WITH SAND (CL) FILL - Dark gray.	AU							14	
5		FAT CLAY (CH) - Soft to hard, dark gray.	ST			1.50				20	
6		Gray from 6 to 8 feet.	ST			1.00				20	
8		Reddish brown, gray from 8 to 13 feet.	ST			1.00				24	
10	▽					1.00					
12	▽					1.2					
13		Reddish brown with calcareous deposits from 13 to 18 feet.	ST			4.50+				95	28
18		Reddish brown, light gray with sand seams and calcareous nodules from 18 to 23 feet.	ST			3.50				22	
23										22	
25		LEAN CLAY (CL) - Stiff, brownish yellow, light gray.	ST			2.50				16	
30		Bottom of hole at 30.0 feet.				2.00	2.4			119	16

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/22/25 COMPLETED 4/22/25

CONTRACTOR UES

METHOD Auger 0 - 15 feet, Rotary wash 15 - 60 feet

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

 INITIALLY ENCOUNTERED 10.0 ft

 AFTER 15 MIN. 9.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS					
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit	
0		LEAN CLAY (CL) FILL - Stiff, dark brown, brown, light gray, with gravel. LEAN CLAY WITH SAND (CL) - Firm to stiff, light gray, brownish yellow.	ST			2.00				21	38	14	24
10		<input checked="" type="checkbox"/> FAT CLAY (CH) - Stiff, light gray, brownish yellow.	ST			2.00		.9	91	33	15		
10					5-9-10 (19)				14				
10									13	24	12	13	
15		SILTY SAND (SM) - Medium dense, reddish brown.	SS						19				
20		FAT CLAY (CH) - Hard, reddish brown.	ST			4.50+			26				
20						4.50+			29				
20						4.50+			29				
25								19					
30		SILTY SAND (SM) - Medium dense, light brown.	SS		12-14-12 (26)			19					
35								19					
40		FAT CLAY (CH) - Stiff to hard, reddish brown, light gray. With gravel from 38 to 40 feet.	SS		12-14-16 (30)			19					
40						4.50+		26					
40						4.50+		26					
40						4.50+		16					
43		Reddish brown from 43 to 60 feet.	ST			4.50+		5.4	49	110	21		
60		Bottom of hole at 60.0 feet.	ST										

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/22/25 COMPLETED 4/22/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 11.0 ft

▼ AFTER 15 MIN. 10.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ATTERBERG LIMITS		
												Liquid Limit	Plastic Limit	Plasticity Index
0		LEAN CLAY WITH CLAY (CL) FILL - Stiff, brown with organic matter and root fibers.	ST			2.00					18			
		FAT CLAY (CH) FILL - Stiff, gray, reddish brown with sand seams.	ST			2.00					24			
5		FAT CLAY (CH) - Soft to firm, dark gray.	ST			1.50					24	64	21	43
		Greenish gray, gray from 6 to 8 feet.	ST			1.50					22			
		Reddish brown with gravel and calcareous nodules from 8 to 13 feet.	ST			1.00								
10								1.9		106	22			
15		SILT SAND (SM) - Medium dense, reddish brown.	SS		7-9-7 (16)						27			
20			SS		6-10-7 (17)						25			
25		FAT CLAY (CH) - Firm to stiff, reddish brown.	ST			1.50					33			
30		Bottom of hole at 30.0 feet.	ST			2.50					33			

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/22/25 COMPLETED 4/22/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 17.0 ft

▽ AFTER 15 MIN. 17.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS				
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit
0		LEAN CLAY WITH SAND (CL) FILL - Firm, brownish yellow, gray with gravel and root fibers.	ST			1.50				16		
		LEAN CLAY (CL) - Soft to stiff, dark gray, reddish brown.	ST			0.50		.9		101	21	42
5		Dark gray from 4 to 6 feet.	ST			0.50				21		
		Brownish yellow, light gray from 6 to 8 feet.	ST			2.00				19		
10		FAT CLAY (CH) - Firm to stiff, greenish gray.	ST			1.50				22	54	20
												34
15		LEAN CLAY (CL) - Stiff, reddish brown, light gray.	ST			2.50				19		
20			ST			2.00				18		
25		SILTY SAND (SM) - Medium dense, brownish yellow, light gray.	SS		7-8-8 (16)					21		
30		Bottom of hole at 30.0 feet.	SS		5-10-7 (17)					20		

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/18/25 COMPLETED 4/18/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 12.0 ft

▽ AFTER 15 MIN. 11.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	ATTERBERG LIMITS			
											LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
0		LEAN CLAY WITH SAND (CL) FILL - Dark gray, reddish brown with gravel and root fibers.	AU								16			
5		LEAN CLAY (CL) - Soft to stiff, dark gray.	ST			1.00					19			
10		SANDY LEAN CLAY (CL) - Stiff, brownish yellow.	ST			2.00					18	45	15	30
15		SILTY SAND (SM) - Medium dense, brownish yellow.	SS		7-7-10 (17)	2.00					16			85
20		FAT CLAY (CH) - Hard, reddish brown, greenish gray with calcareous nodules.	ST			4.50+					22			
25		SILTY SAND (SM) - Medium dense, light gray. With clay pockets from 23 to 28 feet.	SS		5-5-6 (11)						23			
30		Brownish yellow from 28 to 30 feet.	SS		5-7-6 (13)						20			
		Bottom of hole at 30.0 feet.									21			

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/24/25 COMPLETED 4/24/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 17.0 ft

▼ AFTER 15 MIN. 13.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS						
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit		
0		LEAN CLAY WITH SAND (CL) FILL - Soft, dark gray, brown, with gravel. With organic matter from 0 to 2 feet. Dark gray, gray, reddish brown from 2 to 4 feet.	ST			0.50				17	32	12	20	71
5		FAT CLAY (CH) - Soft, dark gray, light gray.	ST			1.00		2.0		109	18			
10		LEAN CLAY (CL) - Soft to stiff, gray, light gray.	ST			0.50				23				
15		SILTY SAND (SM) - Loose to medium dense, light gray.	SS		8-8-11 (19)	2.00				18	40	14	26	
18						1.00				20				
20		Reddish brown, light gray from 18 to 28 feet.	SS		6-10-9 (19)					22				
25			SS		8-6-4 (10)					19				
28		Reddish brown from 28 to 30 feet.	SS		7-7-11 (18)					21				22
30		Bottom of hole at 30.0 feet.								20				

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/18/25 COMPLETED 4/18/25

CONTRACTOR UES

METHOD Auger 0 - 30 feet

LOGGED BY JF CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 12.0 ft

▼ AFTER 15 MIN. 9.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS				
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit
0		SANDY LEAN CLAY (CL) FILL - Dark brown.	AU								13	
5		FAT CLAY (CH) - Soft, dark gray, brown.	ST			1.00					20	
10		LEAN CLAY / LEAN CLAY WITH SAND (CL) - Stiff, brownish yellow, light gray.	ST			0.50					22	
15		POORLY GRADED SAND WITH SILT (SP-SM) - Medium dense, brownish yellow.	SS		8-5-10 (15)	2.00					18	49
20			SS		7-7-12 (19)	2.50					16	34
25			SS		5-6-10 (16)						20	
30		Bottom of hole at 30.0 feet.	SS		7-5-11 (16)						14	
												9

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/8/25 COMPLETED 4/8/25

CONTRACTOR UES

METHOD Auger 0 - 25 feet

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

▽ INITIALLY ENCOUNTERED 13.0 ft

▽ AFTER 15 MIN. 11.0 ft

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS						
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	Liquid Limit		
0		SANDY LEAN CLAY (CL) FILL - Firm, dark gray, light brown, reddish brown.	ST			1.50				18	36	14	22	67
		SANDY LEAN CLAY (CL) - Firm, dark gray, brown.	ST			1.50		3.3		111	18			
5		FAT CLAY (CH) - Firm, dark gray, gray, reddish brown.	ST			1.50				27				
		LEAN CLAY (CL) / SANDY LEAN CLAY (CL) - Firm to stiff, reddish brown.	ST			2.00				19	45	18	27	
10			ST			2.00				21				
	▼									20				
15		Brownish yellow, light gray from 13 to 25 feet.	ST			1.50				20				
	▼									20				
20		With gravel from 18 to 28 feet.	ST			3.00				20				
										20				
25		Bottom of hole at 25.0 feet.	ST			2.00		1.3	20	111	18			

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/3/25 **COMPLETED** 4/3/25

CONTRACTOR UES

METHOD Auger 0 - 5 feet

LOGGED BY JA **CHECKED BY** V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION _____ **NORTHING** _____

GROUND WATER LEVELS: _____ **EASTING** _____

INITIALLY ENCOUNTERED Not Encountered

AFTER 15 MIN. Not Measured

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ATTERBERG LIMITS		
												LIQUID	PLASTIC	PLASTICITY
0.0		SANDY LEAN CLAY (CL) FILL - Stiff, dark gray, with root fibers, sand seams and rock.	ST			2.00					16	39	15	24
2.5		FAT CLAY (CH) - Firm, dark gray, light gray, reddish brown.	ST			1.50					33			
5.0		Bottom of hole at 5.0 feet.	ST			1.50					25			

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/3/25 **COMPLETED** 4/3/25

CONTRACTOR UES

METHOD Auger 0 - 5 feet

LOGGED BY JA **CHECKED BY** V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION _____ **NORTHING** _____

GROUND WATER LEVELS: _____ **EASTING** _____

INITIALLY ENCOUNTERED Not Encountered

AFTER 15 MIN. Not Measured

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	ATTERBERG LIMITS			
								Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	LIQUID LIMIT
0.0		LEAN CLAY (CL) FILL - Firm, dark gray, with root fibers.	ST			1.50				22	
2.5		FAT CLAY (CH) - Soft to firm, gray, dark gray.	ST			1.00				27	74
5.0		Bottom of hole at 5.0 feet.	ST			1.50				24	24

CLIENT Galena Park ISD

PROJECT NUMBER H251673-2

DATE STARTED 4/22/25 COMPLETED 4/22/25

CONTRACTOR UES

METHOD Auger 0-6 feet

LOGGED BY JA CHECKED BY V.G.

NOTES

PROJECT NAME Galena Park High School - Phase 3B

PROJECT LOCATION Galena Park, TX 77547

GROUND ELEVATION NORTHING

GROUND WATER LEVELS: EASTING

INITIALLY ENCOUNTERED Not Encountered

AFTER 15 MIN. Not Measured

AFTER ---

DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	TORVANE (tsf)	Compressive Strength (tsf)	Confining Pressure (psi)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	ATTERBERG LIMITS		
												LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX
0.0		PAVEMENT - 4.5 inches thick, concrete.	RC											
		BASE MATERIAL - 7.5 inches thick, crushed concrete.	AU											
		LEAN CLAY WITH SAND (CL) FILL - Stiff, brown.	ST			3.00						13	32	13
2.5		FAT CLAY (CH) - Firm, dark gray.	ST			1.50						22		19
5.0		Bottom of hole at 5.0 feet.	ST			1.50						22		73

ABSORPTION SWELL TEST (ASTM D4546) RESULTS						
Boring No.	B-07	B-10	B-11	B-13	B-14	B-16
Average Sample Depth (ft)	5	7	5	5	7	9
Sample Height (in)	1	1	1	1	1	1
Sample Diameter (in)	2.5	2.5	2.5	2.5	2.5	2.5
Initial Sample Volume (cu in)	4.91	4.91	4.91	4.91	4.91	4.91
Initial Sample Weight (gr)	154.5	147.7	159.9	157.3	162.9	160.1
Initial Moisture (%)	21	34	21	19	13	20
Final Moisture (%)	22	35	23	22	15	22
Initial Wet Unit Weight (pcf)	120	115	124	122	126	124
Initial Dry Unit Weight (pcf)	99	85	103	103	112	103
Applied Over Burden (psi)	4.3	6.1	4.3	4.3	6.1	7.8
Initial Dial Reading (in)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Final Dial Reading (in)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Swell (%)	0.00	0.00	0.00	0.00	0.00	0.00

ABSORPTION SWELL TEST (ASTM D4546) RESULTS						
Boring No.	B-18	B-19	B-20			
Average Sample Depth (ft)	7	7	7			
Sample Height (in)	1	1	1			
Sample Diameter (in)	2.5	2.5	2.5			
Initial Sample Volume (cu in)	4.91	4.91	4.91			
Initial Sample Weight (gr)	163.7	162.4	163.7			
Initial Moisture (%)	17	17	18			
Final Moisture (%)	19	20	19			
Initial Wet Unit Weight (pcf)	127	126	126			
Initial Dry Unit Weight (pcf)	109	108	108			
Applied Over Burden (psi)	6.1	6.1	6.1			
Initial Dial Reading (in)	0.0000	0.0000	0.0000			
Final Dial Reading (in)	0.0010	0.0030	0.0000			
Swell (%)	0.10	0.30	0.00			

Appendix D - Aerial Photographs

AERIAL PHOTOGRAPH - 1944

UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 1978

UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 1989

UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 1995

UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2002

UES Project No. H251673-2

Galena Park High School – Phase 3B

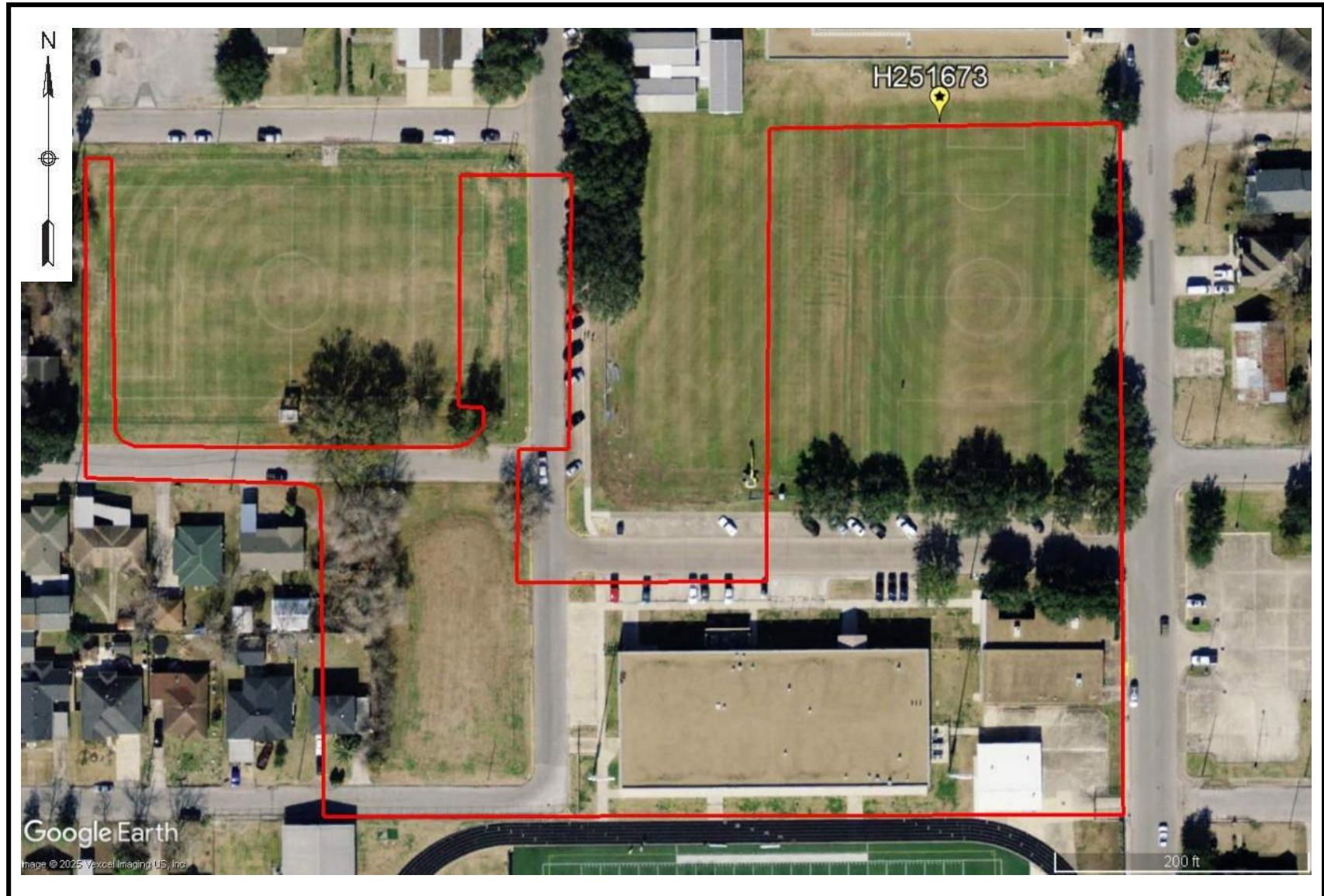
 UES
TM

AERIAL PHOTOGRAPH - 2004

UES Project No. H251673-2

Galena Park High School – Phase 3B

AERIAL PHOTOGRAPH - 2009

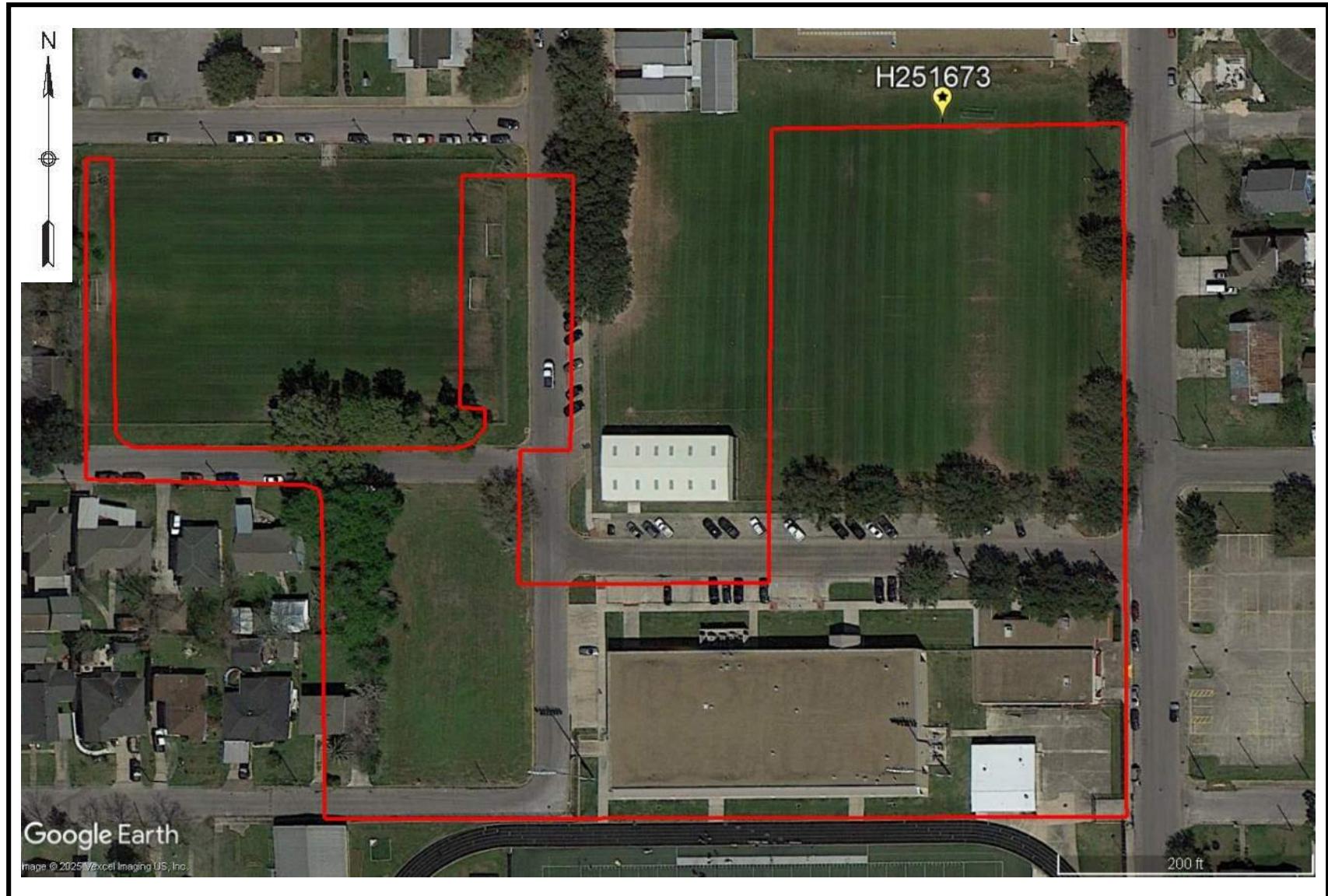


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2010

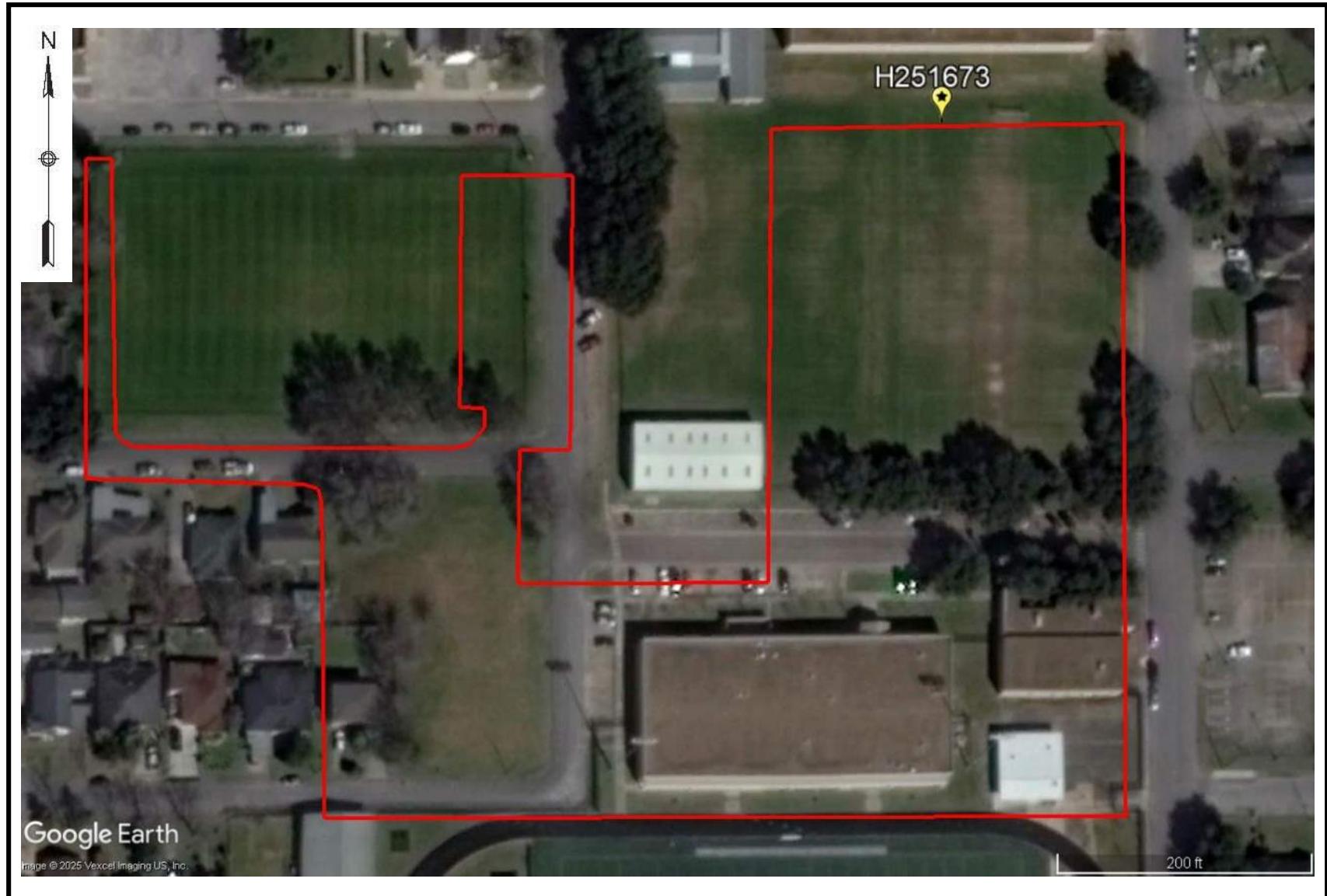


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2011

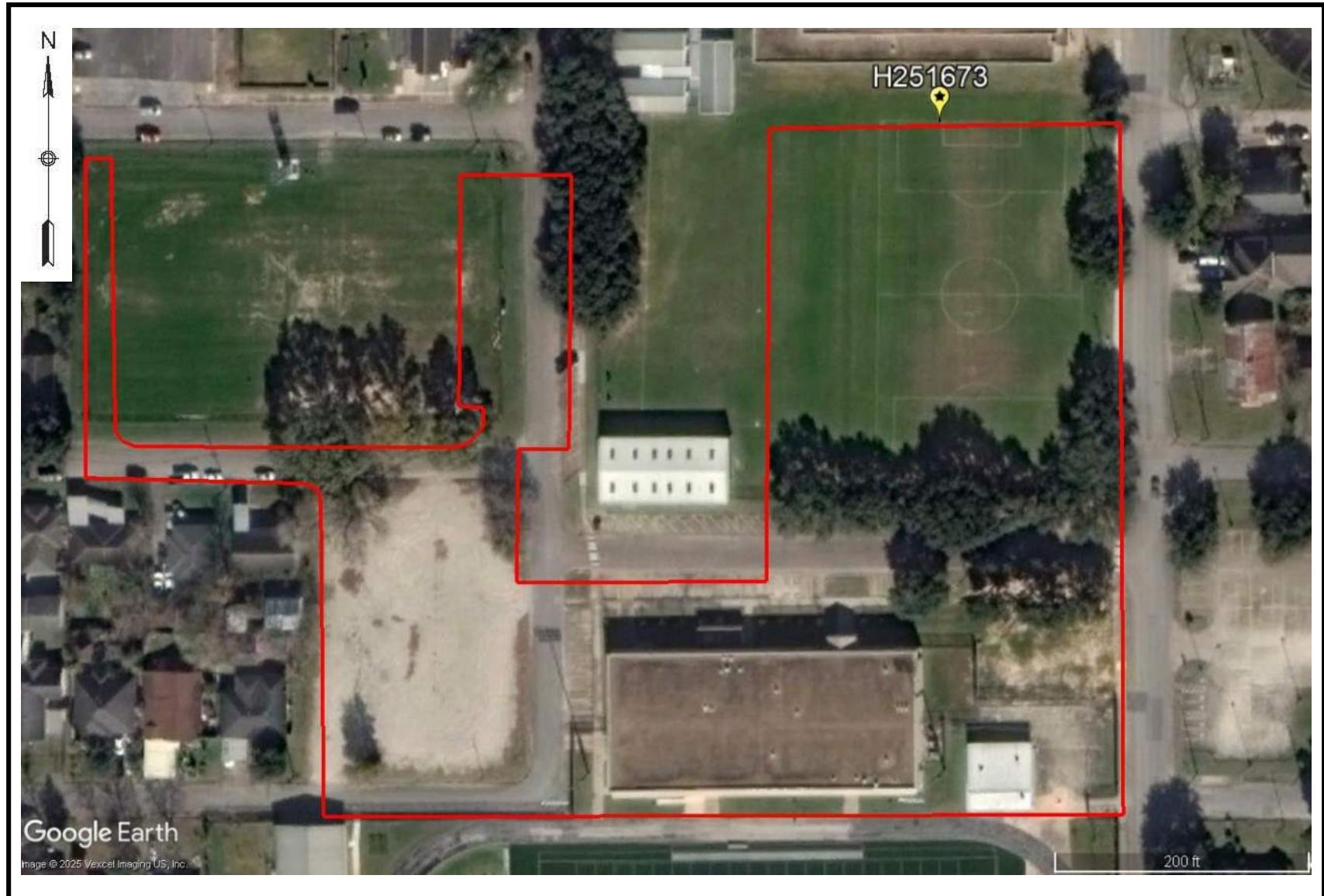


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2016

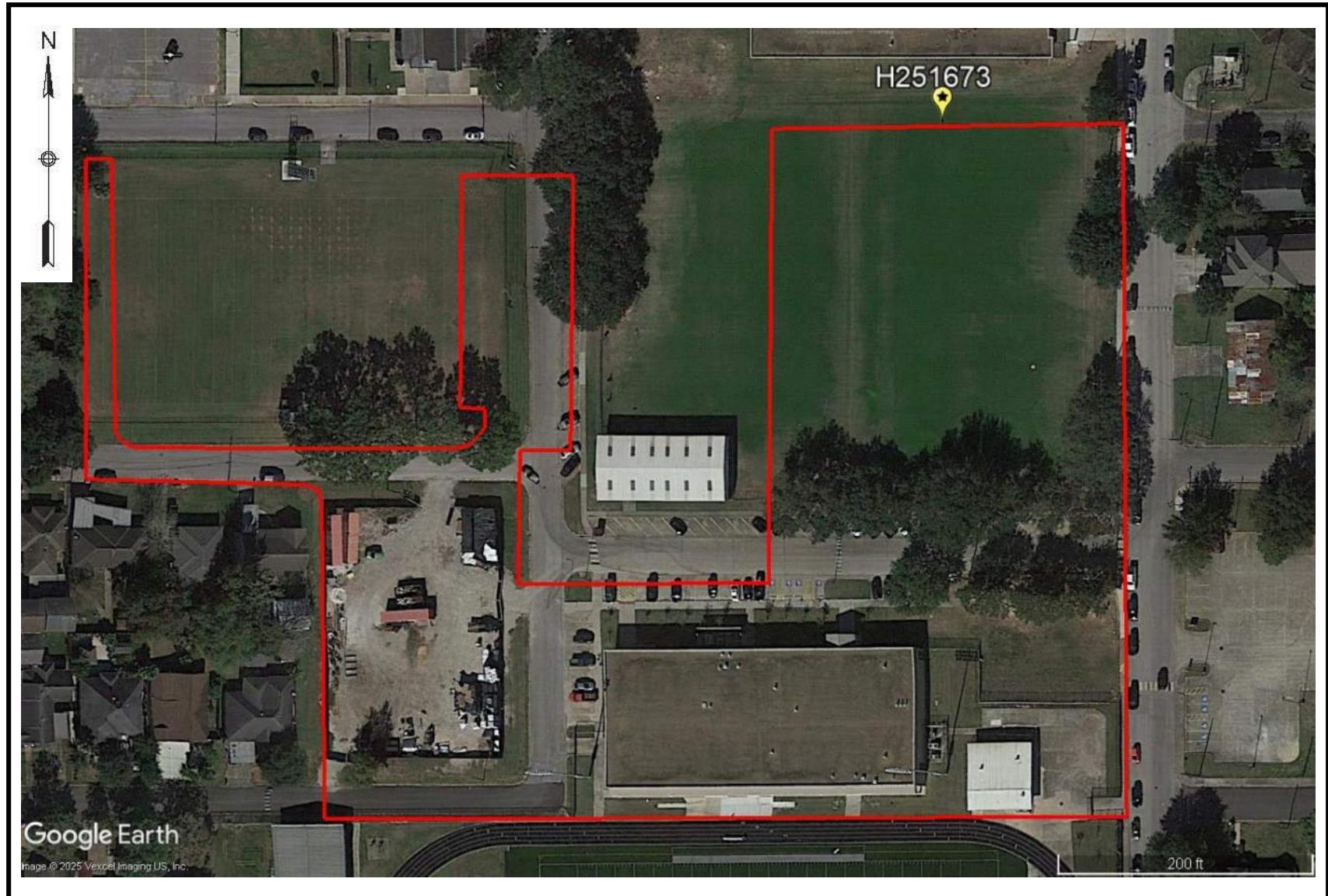


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2018

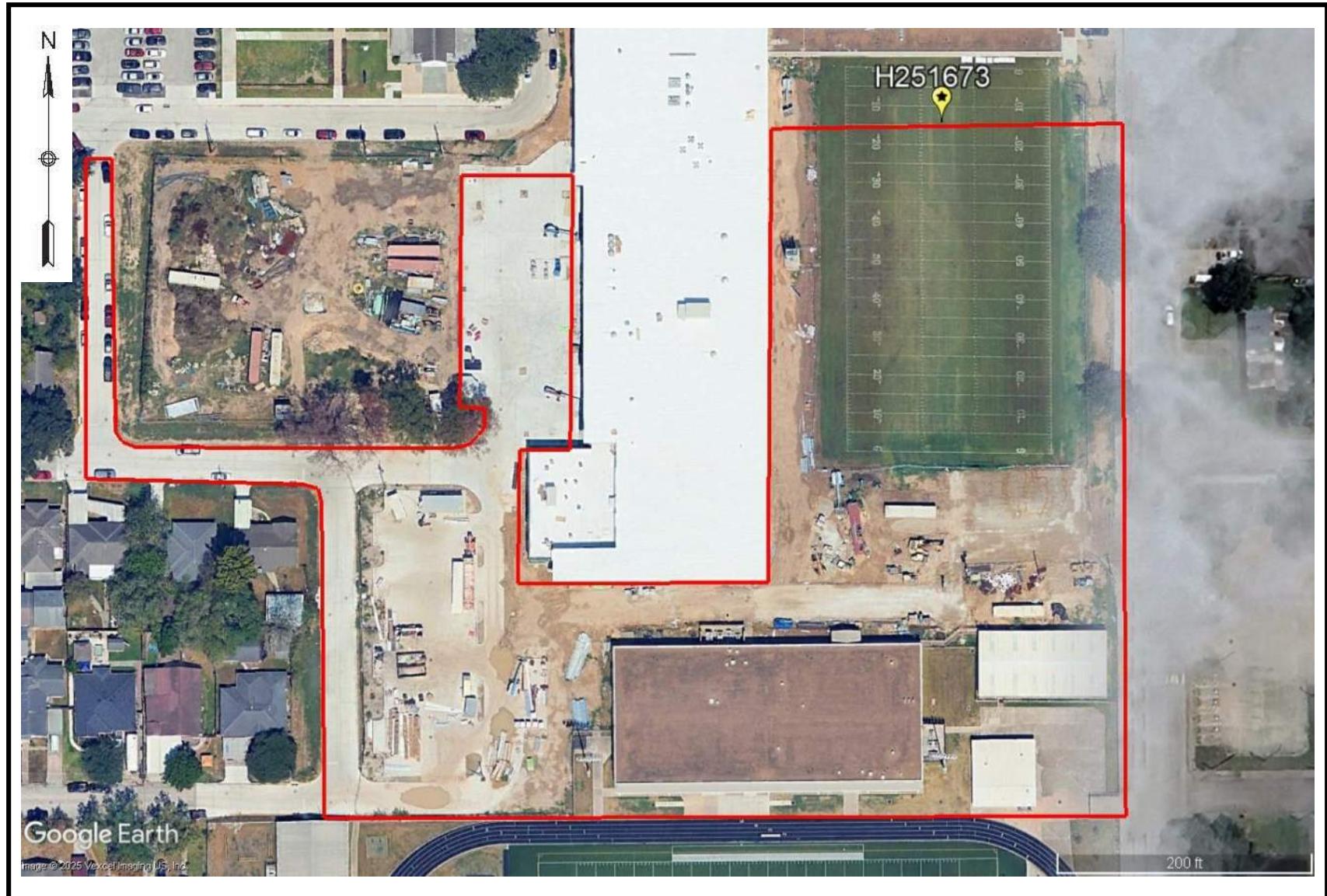


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2020

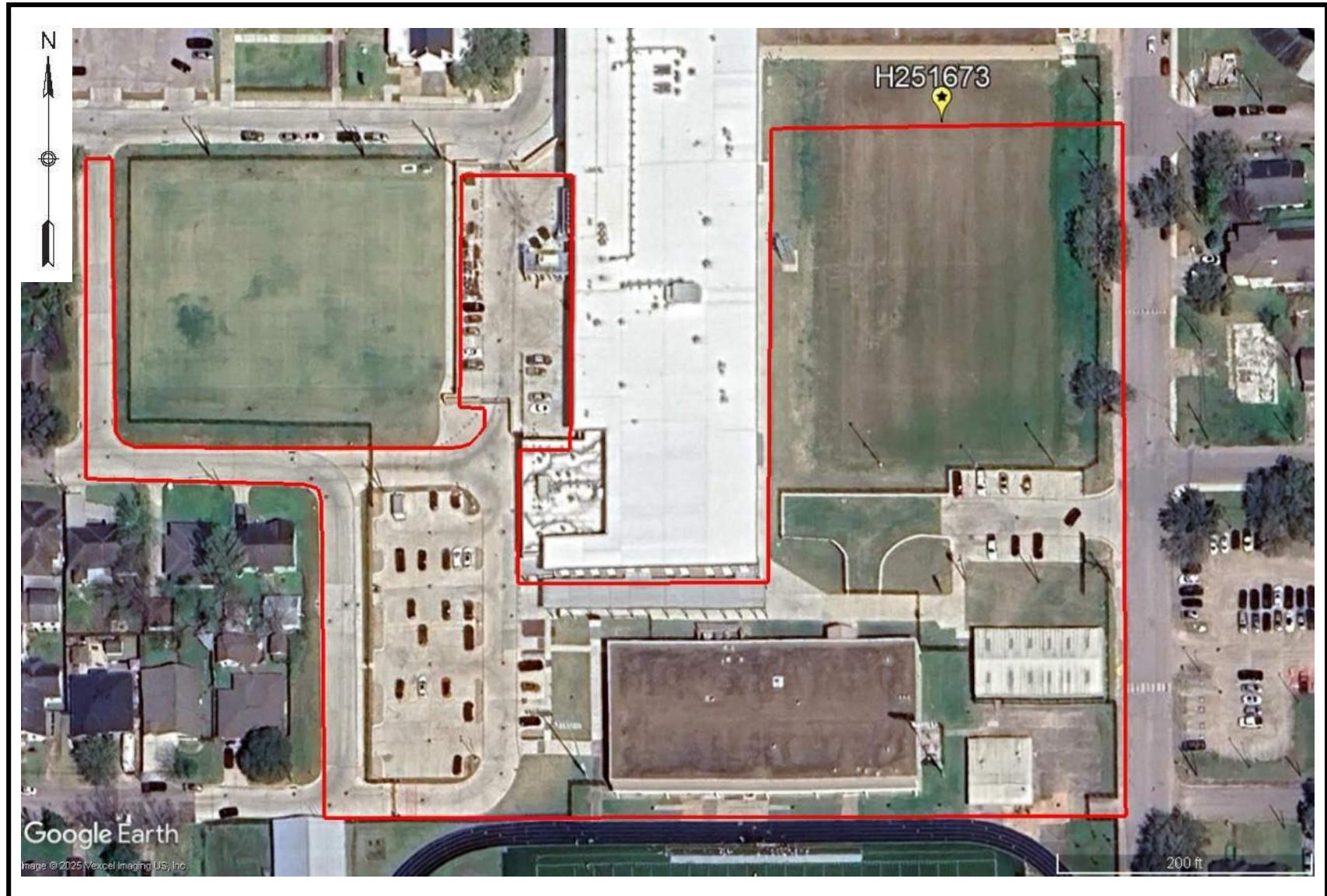


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2023

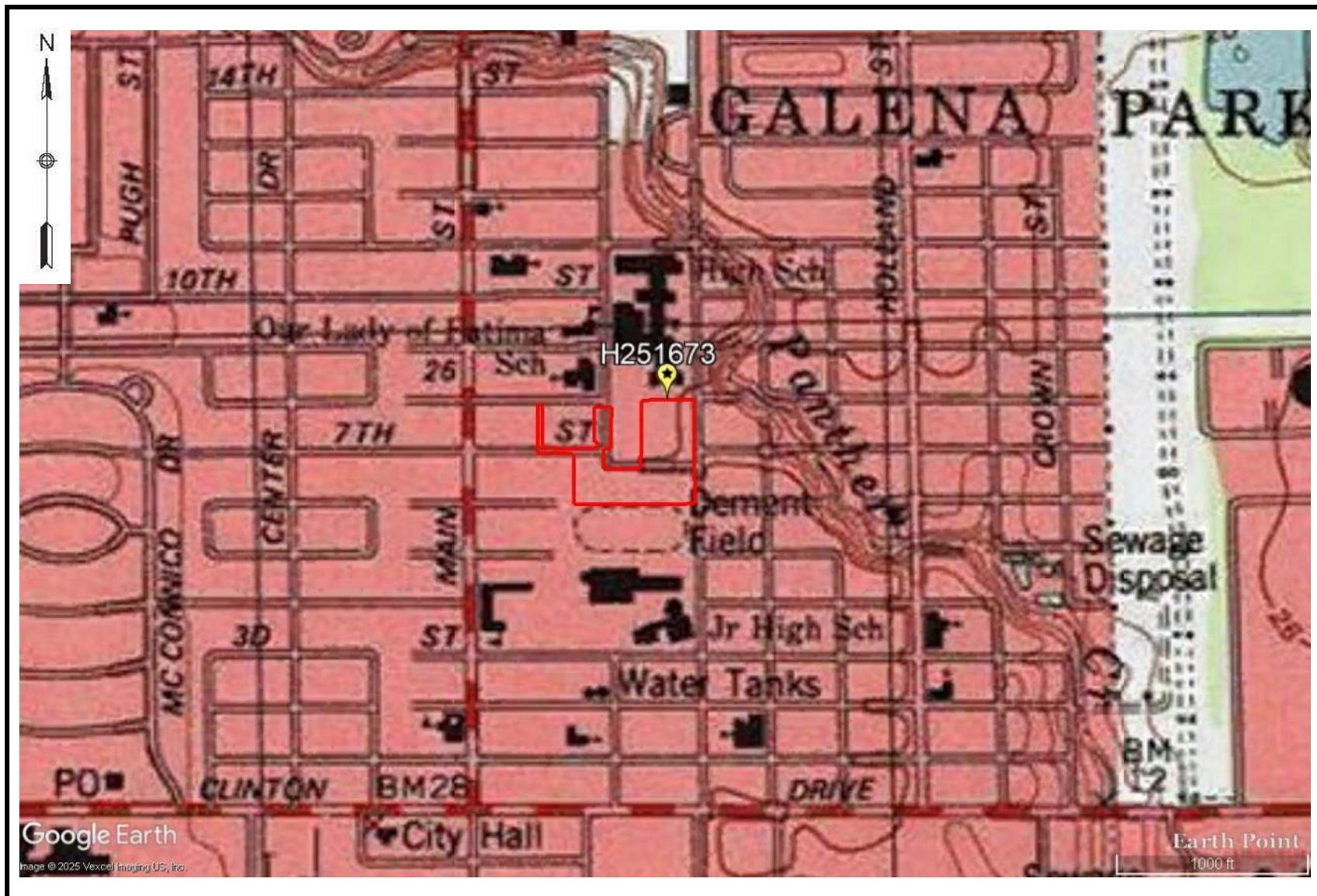


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

AERIAL PHOTOGRAPH - 2025


UES Project No. H251673-2

Galena Park High School – Phase 3B

 UES
TM

Appendix E - USGS Topographic Map

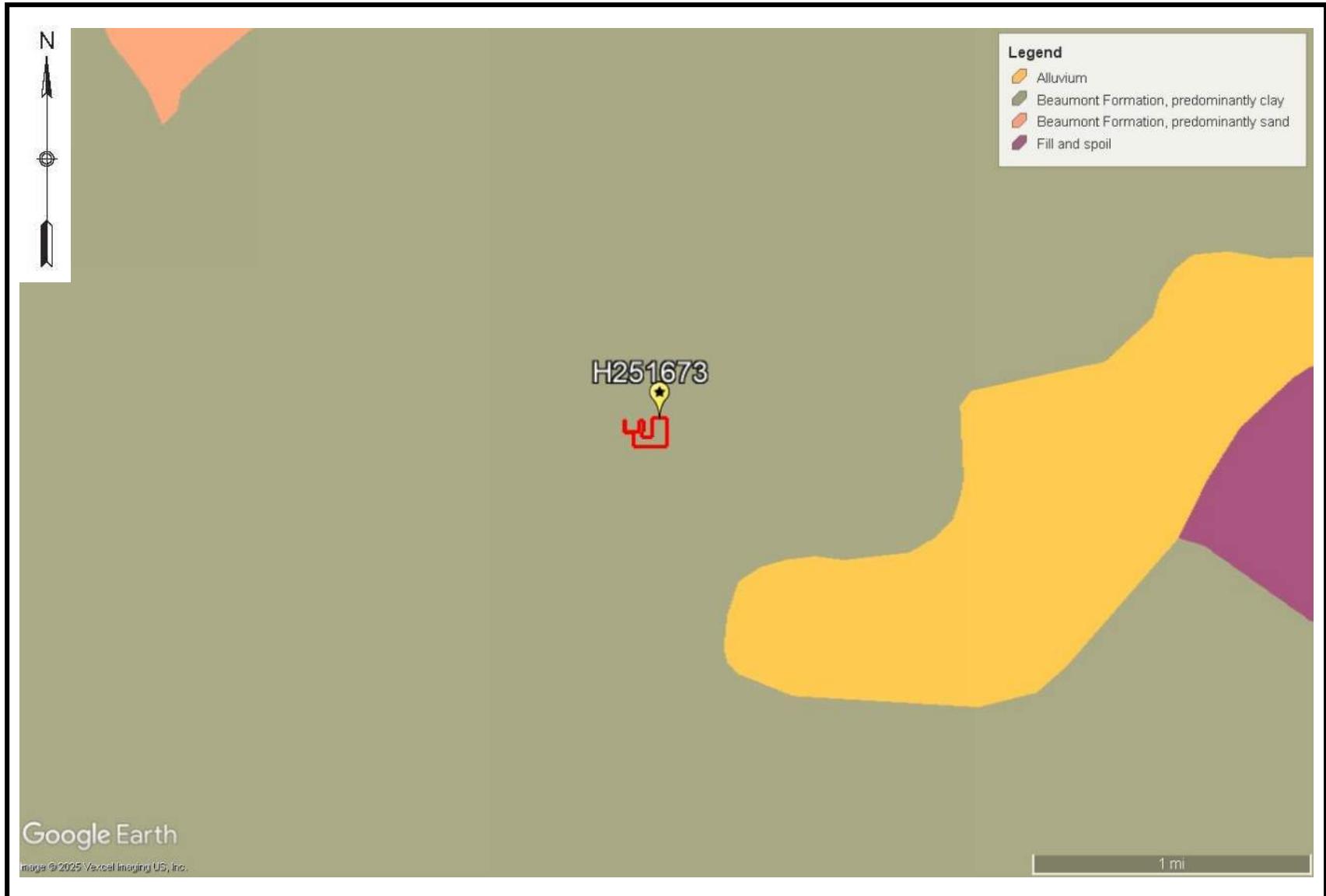
USGS TOPOGRAPHIC MAP

UES Project No. H251673-2

Galena Park High School – Phase 3B

Appendix F - Site Photographs

SITE PHOTOGRAPHS


257*W

61*NE

Appendix G - Geologic Information

GEOLOGIC ATLAS

UES Project No. H251673-2

Galena Park High School – Phase 3B

Mineral Resources On-Line Spatial Data

[Mineral Resources](#) > [Online Spatial Data](#) > [Geology](#) > [by state](#) > [Texas](#)

Beaumont Formation, areas predominantly clay

Beaumont Formation, areas predominantly clay

State [Texas](#)

Name Beaumont Formation, areas predominantly clay

Geologic age Phanerozoic | Cenozoic | Quaternary | Pleistocene-Late

Original map label Qbc

Comments On McAllen-Brownsville Sheet (1976) dominantly clay and mud of low permeability. (from Moore and Wermund, 1993a, 1993b): Light- to dark-gray and bluish- to greenish-gray clay and silt, intermixed and interbedded; contains beds and lenses of fine sand, decayed organic matter, and many buried organic-rich, oxidized soil(?) zones that contain calcareous and ferruginous nodules. Very lt. gray to v. lt. yell-gray sediment cemented by calcium carbonate present in varied forms, veins, laminar zones, burrows, root casts, nodules. Locally, small gypsum crystals present. Includes plastic and compressible clay and mud deposited in flood basins, coastal lakes, and former stream channels on a deltaic plain. Disconformably overlies Lissie Fm. Thickness 5-10 m along north edge of outcrop; thickens southward in subsurface to more than 100 m.

Primary rock type [clay or mud](#)

Secondary rock type [silt](#)

Other rock types

Lithologic constituents Major

Unconsolidated > Fine-detrital > Silt (Bed)
Unconsolidated > Fine-detrital > Clay (Bed)

Map references Bureau of Economic Geology, 1992, Geologic Map of Texas: University of Texas at Austin, Virgil E. Barnes, project supervisor, Hartmann, B.M. and Scranton, D.F., cartography, scale 1:500,000

Unit references Bureau of Economic Geology, 1975, Corpus Christi Sheet, Geologic Atlas of Texas, Bureau of Economic Geology, University of Texas at Austin, scale 1:250,000.

Moore, D.W. and Wermund, E.G., Jr., 1993a, Quaternary geologic map of the Austin 4 x 6 degree quadrangle, United States: U.S. Geological Survey Miscellaneous Investigations Series Map I-1420 (NH-14), scale 1:1,000,000.

[[http://pubs.er.usgs.gov/publication/i1420\(NH14\)](http://pubs.er.usgs.gov/publication/i1420(NH14))]

Bureau of Economic Geology, 1976, McAllen-Brownsville Sheet, Geologic Atlas of Texas, Bureau of Economic Geology, University of Texas at Austin, scale 1:250,000.

Bureau of Economic Geology, 1975, Beeville-Bay City Sheet, Geologic Atlas of Texas, Bureau of Economic Geology, University of Texas at Austin, scale 1:250,000.

Bureau of Economic Geology, 1982, Houston Sheet, Geologic Atlas of Texas, Bureau of Economic Geology, University of Texas at Austin, scale 1:250,000.

Geographic coverage [Aransas](#) - [Austin](#) - [Bee](#) - [Brazoria](#) - [Calhoun](#) - [Cameron](#) - [Chambers](#) - [Colorado](#) - [Fort Bend](#) - [Galveston](#) - [Hardin](#) - [Harris](#) - [Hidalgo](#) - [Jackson](#) - [Jasper](#) - [Jefferson](#) - [Jim Wells](#) - [Kenedy](#) - [Kleberg](#) - [Liberty](#) - [Live Oak](#) - [Matagorda](#) - [Newton](#) - [Nueces](#) - [Orange](#) - [Refugio](#) - [San Patricio](#) - [Victoria](#) - [Waller](#) - [Wharton](#) - [Willacy](#)

Show this information as [\[XML\]](#) - [\[JSON\]](#)

[U.S. Department of the Interior](#) | [U.S. Geological Survey](#)

URL: <http://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=TXQbc;0>

Page Contact Information: Peter Schweitzer

Appendix H - Unified Soil Classification System

UNIFIED SOIL CLASSIFICATION SYSTEM

UNIFIED SOIL CLASSIFICATION AND SYMBOL CHART			
COARSE-GRAINED SOILS (more than 50% of material is larger than No. 200 sieve size.)			
Clean Gravels (Less than 5% fines)			
GRAVELS			
More than 50% of coarse fraction larger than No. 4 sieve size	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	
	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines	
	Gravels with fines (More than 12% fines)		
	GM	Silty gravels, gravel-sand-silt mixtures	
	GC	Clayey gravels, gravel-sand-clay mixtures	
	Clean Sands (Less than 5% fines)		
SANDS 50% or more of coarse fraction smaller than No. 4 sieve size	SW	Well-graded sands, gravelly sands, little or no fines	
	SP	Poorly graded sands, gravelly sands, little or no fines	
	Sands with fines (More than 12% fines)		
	SM	Silty sands, sand-silt mixtures	
	SC	Clayey sands, sand-clay mixtures	
	FINE-GRAINED SOILS (50% or more of material is smaller than No. 200 sieve size.)		
SILTS AND CLAYS Liquid limit less than 50%	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	
	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	
	OL	Organic silts and organic silty clays of low plasticity	
SILTS AND CLAYS Liquid limit 50% or greater	MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	
	CH	Inorganic clays of high plasticity, fat clays	
	OH	Organic clays of medium to high plasticity, organic silts	
HIGHLY ORGANIC SOILS	PT	Peat and other highly organic soils	

LABORATORY CLASSIFICATION CRITERIA					
GW	$C_u = \frac{D_{60}}{D_{10}}$ greater than 4; $C_c = \frac{D_{30}}{D_{10} \times D_{60}}$ between 1 and 3				
GP	Not meeting all gradation requirements for GW				
GM	Atterberg limits below "A" line or P.I. less than 4	Above "A" line with P.I. between 4 and 7 are borderline cases requiring use of dual symbols			
GC	Atterberg limits above "A" line with P.I. greater than 7				
SW	$C_u = \frac{D_{60}}{D_{10}}$ greater than 4; $C_c = \frac{D_{30}}{D_{10} \times D_{60}}$ between 1 and 3				
SP	Not meeting all gradation requirements for GW				
SM	Atterberg limits below "A" line or P.I. less than 4	Limits plotting in shaded zone with P.I. between 4 and 7 are borderline cases requiring use of dual symbols.			
SC	Atterberg limits above "A" line with P.I. greater than 7				
Determine percentages of sand and gravel from grain-size curve. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are classified as follows:					
Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 5 to 12 percent Borderline cases requiring dual symbols					
PLASTICITY CHART					
PLASTICITY INDEX (PI) (%)	LIQUID LIMIT (LL) (%)				

TERMS DESCRIBING SOIL CONSISTENCY				
Fine Grained Soils		Coarse Grained Soils		
<u>Description</u>	<u>Penetrometer Reading (tsf)</u>	<u>Penetration Resistance (blows/ft)</u>	<u>Description</u>	<u>Relative Density</u>
Soft	0.0 to 1.0	0 to 4	Very Loose	0 to 20%
Firm	1.0 to 1.5	4 to 10	Loose	20 to 40%
Stiff	1.5 to 3.0	10 to 30	Medium Dense	40 to 70%
Very Stiff	3.0 to 4.5	30 to 50	Dense	70 to 90%
Hard	4.5+	Over 50	Very Dense	90 to 100%

REQUEST FOR SUBSTITUTION

Contract Award Date: N/A

To: PBK Architects

Substitution Requested By: Canopy Solutions, LLC.

Project Name and Number: Galena Park High School Package 3B, No. 240539

We submit for consideration the following product in lieu of the specified item for the above project:

Drawing No.	Specification Section	Paragraph	Specified Item
<u>N/A</u>	<u>10-73-16.13</u>	<u>2.1-A</u>	<u>Metal Canopies</u>

Proposed Substitution: Canopy Solutions, LLC.

Request is made during bidding construction period.

Submit in accordance with Section 01 33 00.

1. Technical data, cost, and time information relating to changes to Construction Documents required by proposed substitution.
2. Detailed comparison of proposed substitution and specified product including but not limited to warranty, significant variations, qualifications of manufacturers, and maintenance.
3. Complete technical data, detailed shop drawings, samples, installation procedures, warranty, and substantiating data marked to indicate equivalent quality and performance to that specified. Manufacturer sell sheets are not acceptable submittals.

Cause for Request: Canopy Solutions is not listed as an approved manufacturer.

Cost saving realized by Owner N/A

Does substitution affect adjacent Work, Construction Documents, cost, schedule, quality, and related submittals?

Yes No On separate sheet, explain affects to the Work, documents, schedule, and submittals.

The Contractor is responsible for associated costs and additional time of the proposed substitution including costs incurred by the Architect for evaluation of substitution and changes to the documents. Describe costs for changes to design, including engineering and detailing costs caused by the requested substitution.

Warranty: Is the warranty for the requested substitution the same or different? Yes No

Explain Differences: _____

Contractor Certification:

In making a request for substitution, the Contractor certifies that:

1. The proposed substitution has been thoroughly researched and evaluated and determined as equivalent or superior to specified product or material, will fit into space provided, and is compatible with adjacent materials.
2. It will provide the same or better warranty for the proposed substitution at no additional cost to the Owner.

3. Cost data is complete and includes related costs under the Contract. Claims for additional costs related to the proposed substitution that may subsequently become apparent are waived.
4. It will assume the responsibility for delays and costs caused by the proposed substitution, if approved, are accepted by the Contractor unless delays are and costs are specifically mentioned and approved in writing by the Owner and the Architect.
5. It will assume the liability for the performance of the substitution and its performance.
6. The installation of the proposed substitution is coordinated with the Work and with changes required for the Work.
7. It will reimburse the Owner and Architect for evaluation and redesign services associated with the substitution request and, when required, by approval by governing authorities.

Submitted by:

Viviana Villa

Estimating Assistant

Signature of Contractor

Title

Canopy Solutions, LLC. 713-510-3800 12/23/2025

Firm

Telephone

Date

Signature shall be by the individual authorized to legally bind the Contractor's to the above terms. Failure to provide legally binding signature will result in retraction of approval.

FOR USE BY ARCHITECT:

Accepted Accepted as Noted
 Not Accepted Received Too Late

By: Jan Lepicovsky

Date: 1/6/25

Remarks: _____

FOR USE BY OWNER:

Accepted Not Accepted

By: _____

By: _____

Remarks: _____

END OF SECTION 01 25 00

REQUEST FOR SUBSTITUTION

Contract Award Date: _____

To: _____

Substitution Requested By: Erie Metal Specialties, Inc. (manufacturer)

Project Name and Number: Galena Park High School Package 3B (240539)

We submit for consideration the following product in lieu of the specified item for the above project:

Drawing No.	Specification Section	Paragraph	Specified Item
_____	<u>079513</u>	<u>2.3E, F, G</u>	<u>Wabo Flameguard II</u> <u>C/S fire barriers</u>

Proposed Substitution: FB-Series

Request is made during X bidding _____ construction period.

Submit in accordance with Section 01 33 00.

1. Technical data, cost, and time information relating to changes to Construction Documents required by proposed substitution.
2. Detailed comparison of proposed substitution and specified product including but not limited to warranty, significant variations, qualifications of manufacturers, and maintenance.
3. Complete technical data, detailed shop drawings, samples, installation procedures, warranty, and substantiating data marked to indicate equivalent quality and performance to that specified. Manufacturer sell sheets are not acceptable submittals.

Cause for Request: Equal product for substitution

Cost saving realized by Owner TBD - deduct

Does substitution affect adjacent Work, Construction Documents, cost, schedule, quality, and related submittals?

Yes _____ No X On separate sheet, explain affects to the Work, documents, schedule, and submittals.

The Contractor is responsible for associated costs and additional time of the proposed substitution including costs incurred by the Architect for evaluation of substitution and changes to the documents. Describe costs for changes to design, including engineering and detailing costs caused by the requested substitution.

Warranty: Is the warranty for the requested substitution the same or different? Yes X same No _____

Explain Differences: _____

Contractor Certification:

In making a request for substitution, the Contractor certifies that:

1. The proposed substitution has been thoroughly researched and evaluated and determined as equivalent or superior to specified product or material, will fit into space provided, and is compatible with adjacent materials.
2. It will provide the same or better warranty for the proposed substitution at no additional cost to the Owner.

3. Cost data is complete and includes related costs under the Contract. Claims for additional costs related to the proposed substitution that may subsequently become apparent are waived.
4. It will assume the responsibility for delays and costs caused by the proposed substitution, if approved, are accepted by the Contractor unless delays are and costs are specifically mentioned and approved in writing by the Owner and the Architect.
5. It will assume the liability for the performance of the substitution and its performance.
6. The installation of the proposed substitution is coordinated with the Work and with changes required for the Work.
7. It will reimburse the Owner and Architect for evaluation and redesign services associated with the substitution request and, when required, by approval by governing authorities.

Submitted by:

Nicole DiChristina

Lead Office Coord.

Signature of Contractor

Title

Erie Metal Specialties, Inc. 716-542-3991 12-19-25

Firm

Telephone

Date

Signature shall be by the individual authorized to legally bind the Contractor's to the above terms. Failure to provide legally binding signature will result in retraction of approval.

FOR USE BY ARCHITECT:

Accepted Accepted as Noted
 Not Accepted Received Too Late

By: Jan Lepicovsky

Date: 1/5/2026

Remarks: _____

FOR USE BY OWNER:

Accepted Not Accepted

By: _____

By: _____

Remarks: _____

END OF SECTION 01 25 00

REQUEST FOR SUBSTITUTION

Contract Award Date: _____

To: _____

Substitution Requested By: Erie Metal Specialties, Inc. (manufacturer)

Project Name and Number: Galena Park High School Package 3B (240539)

We submit for consideration the following product in lieu of the specified item for the above project:

Drawing No.	Specification Section	Paragraph	Specified Item
_____	<u>079513</u>	<u>2.3E, F, G</u>	<u>Emseal WFR2</u>

Proposed Substitution: CSS(2FR)-Series

Request is made during X bidding _____ construction period.

Submit in accordance with Section 01 33 00.

1. Technical data, cost, and time information relating to changes to Construction Documents required by proposed substitution.
2. Detailed comparison of proposed substitution and specified product including but not limited to warranty, significant variations, qualifications of manufacturers, and maintenance.
3. Complete technical data, detailed shop drawings, samples, installation procedures, warranty, and substantiating data marked to indicate equivalent quality and performance to that specified. Manufacturer sell sheets are not acceptable submittals.

Cause for Request: Equal product for substitution

Cost saving realized by Owner TBD - deduct

Does substitution affect adjacent Work, Construction Documents, cost, schedule, quality, and related submittals?

Yes _____ No X On separate sheet, explain affects to the Work, documents, schedule, and submittals.

The Contractor is responsible for associated costs and additional time of the proposed substitution including costs incurred by the Architect for evaluation of substitution and changes to the documents. Describe costs for changes to design, including engineering and detailing costs caused by the requested substitution.

Warranty: Is the warranty for the requested substitution the same or different? Yes Xsame No _____

Explain Differences: _____

Contractor Certification:

In making a request for substitution, the Contractor certifies that:

1. The proposed substitution has been thoroughly researched and evaluated and determined as equivalent or superior to specified product or material, will fit into space provided, and is compatible with adjacent materials.
2. It will provide the same or better warranty for the proposed substitution at no additional cost to the Owner.

3. Cost data is complete and includes related costs under the Contract. Claims for additional costs related to the proposed substitution that may subsequently become apparent are waived.
4. It will assume the responsibility for delays and costs caused by the proposed substitution, if approved, are accepted by the Contractor unless delays and costs are specifically mentioned and approved in writing by the Owner and the Architect.
5. It will assume the liability for the performance of the substitution and its performance.
6. The installation of the proposed substitution is coordinated with the Work and with changes required for the Work.
7. It will reimburse the Owner and Architect for evaluation and redesign services associated with the substitution request and, when required, by approval by governing authorities.

Submitted by:

Nicole DiChristina

Lead Office Coord.

Signature of Contractor

Title

Erie Metal Specialties, Inc. 716-542-3991 12-19-25

Firm

Telephone

Date

Signature shall be by the individual authorized to legally bind the Contractor's to the above terms. Failure to provide legally binding signature will result in retraction of approval.

FOR USE BY ARCHITECT:

Accepted Accepted as Noted
 Not Accepted Received Too Late

By: Jan Lepicovsky

Date: 1/5/2026

Remarks: _____

FOR USE BY OWNER:

Accepted Not Accepted

By: _____

By: _____

Remarks: _____

END OF SECTION 01 25 00

REQUEST FOR SUBSTITUTION

Contract Award Date: _____

To: _____

Substitution Requested By: Erie Metal Specialties, Inc. (manufacturer)

Project Name and Number: Galena Park High School Package 3B (240539)

We submit for consideration the following product in lieu of the specified item for the above project:

Drawing No.	Specification Section	Paragraph	Specified Item
_____	<u>079513</u>	<u>2.3C, D</u>	<u>Balco WD/C/S flush seismic wall and ceiling</u>

Proposed Substitution: ENWJ-Series

Request is made during X bidding _____ construction period.

Submit in accordance with Section 01 33 00.

1. Technical data, cost, and time information relating to changes to Construction Documents required by proposed substitution.
2. Detailed comparison of proposed substitution and specified product including but not limited to warranty, significant variations, qualifications of manufacturers, and maintenance.
3. Complete technical data, detailed shop drawings, samples, installation procedures, warranty, and substantiating data marked to indicate equivalent quality and performance to that specified. Manufacturer sell sheets are not acceptable submittals.

Cause for Request: Equal product for substitution

Cost saving realized by Owner TBD - deduct

Does substitution affect adjacent Work, Construction Documents, cost, schedule, quality, and related submittals?

Yes _____ No X On separate sheet, explain affects to the Work, documents, schedule, and submittals.

The Contractor is responsible for associated costs and additional time of the proposed substitution including costs incurred by the Architect for evaluation of substitution and changes to the documents. Describe costs for changes to design, including engineering and detailing costs caused by the requested substitution.

Warranty: Is the warranty for the requested substitution the same or different? Yes Xsame No _____

Explain Differences: _____

Contractor Certification:

In making a request for substitution, the Contractor certifies that:

1. The proposed substitution has been thoroughly researched and evaluated and determined as equivalent or superior to specified product or material, will fit into space provided, and is compatible with adjacent materials.
2. It will provide the same or better warranty for the proposed substitution at no additional cost to the Owner.

3. Cost data is complete and includes related costs under the Contract. Claims for additional costs related to the proposed substitution that may subsequently become apparent are waived.
4. It will assume the responsibility for delays and costs caused by the proposed substitution, if approved, are accepted by the Contractor unless delays are and costs are specifically mentioned and approved in writing by the Owner and the Architect.
5. It will assume the liability for the performance of the substitution and its performance.
6. The installation of the proposed substitution is coordinated with the Work and with changes required for the Work.
7. It will reimburse the Owner and Architect for evaluation and redesign services associated with the substitution request and, when required, by approval by governing authorities.

Submitted by:

Nicole DiChristina

Lead Office Coord.

Signature of Contractor

Title

Erie Metal Specialties, Inc. 716-542-3991 12-19-25

Firm

Telephone

Date

Signature shall be by the individual authorized to legally bind the Contractor's to the above terms. Failure to provide legally binding signature will result in retraction of approval.

FOR USE BY ARCHITECT:

Accepted Accepted as Noted
 Not Accepted Received Too Late

By: Jan Lepicovsky

Date: 1/5/2026

Remarks: _____

FOR USE BY OWNER:

Accepted Not Accepted

By: _____

By: _____

Remarks: _____

END OF SECTION 01 25 00

REQUEST FOR SUBSTITUTION

Contract Award Date: _____

To: _____

Substitution Requested By: Erie Metal Specialties, Inc. (manufacturer)

Project Name and Number: Galena Park High School Package 3B (240539)

We submit for consideration the following product in lieu of the specified item for the above project:

Drawing No.	Specification Section	Paragraph	Specified Item
_____	<u>079513</u>	<u>2.3A, B</u>	<u>Balco NBAF</u>

Proposed Substitution: ESFP-Series

Request is made during X bidding _____ construction period.

Submit in accordance with Section 01 33 00.

1. Technical data, cost, and time information relating to changes to Construction Documents required by proposed substitution.
2. Detailed comparison of proposed substitution and specified product including but not limited to warranty, significant variations, qualifications of manufacturers, and maintenance.
3. Complete technical data, detailed shop drawings, samples, installation procedures, warranty, and substantiating data marked to indicate equivalent quality and performance to that specified. Manufacturer sell sheets are not acceptable submittals.

Cause for Request: Equal product for substitution

Cost saving realized by Owner TBD - deduct

Does substitution affect adjacent Work, Construction Documents, cost, schedule, quality, and related submittals?

Yes _____ No X On separate sheet, explain affects to the Work, documents, schedule, and submittals.

The Contractor is responsible for associated costs and additional time of the proposed substitution including costs incurred by the Architect for evaluation of substitution and changes to the documents. Describe costs for changes to design, including engineering and detailing costs caused by the requested substitution.

Warranty: Is the warranty for the requested substitution the same or different? Yes Xsame No _____

Explain Differences: _____

Contractor Certification:

In making a request for substitution, the Contractor certifies that:

1. The proposed substitution has been thoroughly researched and evaluated and determined as equivalent or superior to specified product or material, will fit into space provided, and is compatible with adjacent materials.
2. It will provide the same or better warranty for the proposed substitution at no additional cost to the Owner.

3. Cost data is complete and includes related costs under the Contract. Claims for additional costs related to the proposed substitution that may subsequently become apparent are waived.
4. It will assume the responsibility for delays and costs caused by the proposed substitution, if approved, are accepted by the Contractor unless delays are and costs are specifically mentioned and approved in writing by the Owner and the Architect.
5. It will assume the liability for the performance of the substitution and its performance.
6. The installation of the proposed substitution is coordinated with the Work and with changes required for the Work.
7. It will reimburse the Owner and Architect for evaluation and redesign services associated with the substitution request and, when required, by approval by governing authorities.

Submitted by:

Nicole DiChristina

Lead Office Coord.

Signature of Contractor

Title

Erie Metal Specialties, Inc. 716-542-3991 12-19-25

Firm

Telephone

Date

Signature shall be by the individual authorized to legally bind the Contractor's to the above terms. Failure to provide legally binding signature will result in retraction of approval.

FOR USE BY ARCHITECT:

Accepted Accepted as Noted
 Not Accepted Received Too Late

By: Jan Lepicovsky

Date: 1/5/2026

Remarks: _____

FOR USE BY OWNER:

Accepted Not Accepted

By: _____

By: _____

Remarks: _____

END OF SECTION 01 25 00

REQUEST FOR SUBSTITUTION

Contract Award Date: _____

To: _____

Substitution Requested By: Erie Metal Specialties, Inc. (manufacturer)

Project Name and Number: Galena Park High School Package 3B (240539)

We submit for consideration the following product in lieu of the specified item for the above project:

Drawing No.	Specification Section	Paragraph	Specified Item
_____	<u>079513</u>	<u>2.3I</u>	<u>Balco FCWW</u>

Proposed Substitution: EWJ-Series

Request is made during X bidding _____ construction period.

Submit in accordance with Section 01 33 00.

1. Technical data, cost, and time information relating to changes to Construction Documents required by proposed substitution.
2. Detailed comparison of proposed substitution and specified product including but not limited to warranty, significant variations, qualifications of manufacturers, and maintenance.
3. Complete technical data, detailed shop drawings, samples, installation procedures, warranty, and substantiating data marked to indicate equivalent quality and performance to that specified. Manufacturer sell sheets are not acceptable submittals.

Cause for Request: Equal product for substitution

Cost saving realized by Owner TBD - deduct

Does substitution affect adjacent Work, Construction Documents, cost, schedule, quality, and related submittals?

Yes _____ No X On separate sheet, explain affects to the Work, documents, schedule, and submittals.

The Contractor is responsible for associated costs and additional time of the proposed substitution including costs incurred by the Architect for evaluation of substitution and changes to the documents. Describe costs for changes to design, including engineering and detailing costs caused by the requested substitution.

Warranty: Is the warranty for the requested substitution the same or different? Yes Xsame No _____

Explain Differences: _____

Contractor Certification:

In making a request for substitution, the Contractor certifies that:

1. The proposed substitution has been thoroughly researched and evaluated and determined as equivalent or superior to specified product or material, will fit into space provided, and is compatible with adjacent materials.
2. It will provide the same or better warranty for the proposed substitution at no additional cost to the Owner.

3. Cost data is complete and includes related costs under the Contract. Claims for additional costs related to the proposed substitution that may subsequently become apparent are waived.
4. It will assume the responsibility for delays and costs caused by the proposed substitution, if approved, are accepted by the Contractor unless delays are and costs are specifically mentioned and approved in writing by the Owner and the Architect.
5. It will assume the liability for the performance of the substitution and its performance.
6. The installation of the proposed substitution is coordinated with the Work and with changes required for the Work.
7. It will reimburse the Owner and Architect for evaluation and redesign services associated with the substitution request and, when required, by approval by governing authorities.

Submitted by:

Nicole DiChristina

Lead Office Coord.

Signature of Contractor

Title

Erie Metal Specialties, Inc. 716-542-3991 12-19-25

Firm

Telephone

Date

Signature shall be by the individual authorized to legally bind the Contractor's to the above terms. Failure to provide legally binding signature will result in retraction of approval.

FOR USE BY ARCHITECT:

Accepted Accepted as Noted
 Not Accepted Received Too Late

By: Jan Lepicovsky

Date: 1/5/2026

Remarks: _____

FOR USE BY OWNER:

Accepted Not Accepted

By: _____

By: _____

Remarks: _____

END OF SECTION 01 25 00